

https://www.starburst.io/datamesh?utm_campaign=data-mesh&utm_medium=ebook&utm_source=ebook&utm_type=eboo&utm_content=digital1&utm_term=

With Early Release ebooks, you get books in their earliest
form—the author’s raw and unedited content as they write—
so you can take advantage of these technologies long before

the official release of these titles.

Zhamak Dehghani

Data Mesh
Delivering Data-Driven Value at Scale

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09232-2

[FILL IN]

Data Mesh
by Zhamak Dehghani

Copyright © 2021 Zhamak Dehghani. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Gary O’Brien
Production Editor: Beth Kelly

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2021: First Edition

Revision History for the Early Release
2021-06-18: First Release
2021-07-28: Second Release
2021-09-07: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492092391 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data Mesh, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Starburst Data. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492092391
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Part I. Why Data Mesh?

1. The In!ection Point. 13
Great Expectations of Data 15
The Great Divide of Data 16

Operational Data 17
Analytical Data 18
Analytical and Operational Data Misintegration 19

Scale, Encounter of a New Kind 20
Beyond Order 21
Approaching the Plateau of Return 22
Recap 22

2. After The In!ection Point. 25
Embrace Change in a Complex, Volatile and Uncertain Business

Environment 27
Align Business, Tech and Now Analytical Data 27
Close The Gap Between Analytical and Operational Data 28
Localize Data Change to Business Domains 30
Reduce Accidental Complexity of Pipelines and Copying Data 31

Sustain Agility in the Face of Growth 31
Remove Centralized and Monolithic Bottlenecks of the Lake or the

Warehouse 32
Reduce Coordination of Data Pipelines 33
Reduce Coordination of Data Governance 33
Enable Autonomy 34

Increase the Ratio of Value from Data to Investment 35

v

Abstract Technical Complexity with a Data Platform 35
Embed Product Thinking Everywhere 35
Go Beyond The Boundaries 36

Recap 36

3. Before The In!ection Point. 39
Evolution of Analytical Data Architectures 40

First Generation: Data Warehouse Architecture 40
Second Generation: Data Lake Architecture 41
Third Generation: Multimodal Cloud Architecture 43

Characteristics of Analytical Data Architecture 44
Monolithic 46

Monolithic Architecture 46
Monolithic Technology 48
Monolithic Organization 48
The complicated monolith 50
Technically-Partitioned Architecture 53
Activity-oriented Team Decomposition 54

Recap 55

Part II. What is Data Mesh

4. Principle of Domain ownership. 65
Apply DDD’s Strategic Design to Data 66
Domain Data Archetypes 68

Source-aligned Domain Data 69
Aggregate Domain Data 71
Consumer-aligned Domain Data 71

Transition to Domain Ownership 72
Push Data Ownership Upstream 72
Define Multiple Connected Models 72
Embrace the Most Relevant Domain, and Don’t Expect the Single Source

of Truth 73
Hide the Data Pipelines as Domains’ Internal Implementation 74

Recap 74

5. Principle of Data as a Product. 75
Apply Product Thinking to Data 77

Baseline usability characteristics of a data product 79
Transition to Data as a Product 86

Include Data Product Ownership in Domains 87

vi | Table of Contents

Recap 92

Prospective Table of Contents (Subject to Change). 93

Table of Contents | vii

PART I

Why Data Mesh?

By doubting we are led to question, by questioning we arrive at the truth.
—Peter Abelard

Data Mesh is a new approach in sourcing, managing, and accessing data for analytical
use cases at scale. Let’s call this class of data, analytical data. Analytical data is used for
predictive or diagnostic use cases. It is the foundation for visualizations and reports
that provide insights into the business. It is used to train machine learning models
that augment the business with data-driven intelligence. It is the essential ingredient
for organizations to move from intuition and gut-driven decision-making to taking
actions based on observations and data-driven predictions. Analytical data is what
powers the software and technology of the future. It enables a technology shift from
human-designed rule-based algorithms to data-driven machine-learned models.
Analytical data is becoming an increasingly critical component of the technology
landscape.

The phrase data in this writeup, if not qualified, refers to analytical
data. Analytical data serves reporting and machine learning train‐
ing use cases.

Data Mesh calls for a fundamental shift in our assumptions, architecture, technical
solutions, and social structure of our organizations, in how we manage, use, and own
analytical data.

• Organizationally, it shifts from centralized ownership of the data by specialists
who run the data platform technologies, to a decentralized data ownership model
pushing ownership and accountability of the data back to the business domains
where it originates from or is used.

• Architecturally, it shifts from collecting data into monolithic warehouses and
lakes to connecting data through a distributed mesh of data accessed through
standardized protocols.

• Technologically, it shifts from technology solutions that treat data as a by-product
of running pipeline code, to solutions that treat data and code that maintains it as
one lively autonomous unit.

• Operationally, it shifts data governance from a top-down centralized operational
model with human interventions, to a federated model with computational poli‐
cies embedded in the nodes on the mesh.

• Principally, it shifts our value system from data as an asset to be collected, to data
as a product to serve and delight the users.

Figure I-1 summarizes the dimensions of shift that Data Mesh introduces.

Figure I-1. Data Mesh dimensions of change

This is quite a shift, and an uncomfortable one. So why do we need it, and why now? I
will answer this question in part I of the book.

In the first chapter we look at the macro drivers, the current realities that have pushed
us to a tipping point, where our past evolutionary approaches no longer serve us. The
second chapter introduces the core outcomes that Data Mesh achieves through its
shifts in approach. And in the last chapter of part I, we briefly review the history of
analytical data management architecture and why what got us here will no longer
take us to the future.

Let’s set the stage for Data Mesh.

CHAPTER 1

The In!ection Point

A note for Early Release readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

A strategic in!ection point is a time in the life of business when its fundamentals are about to
change. "at change can mean an opportunity to rise to new heights. But it may just as likely
signal the beginning of the end.

—Andrew S. Grove, CEO of Intel Corporation

Data Mesh is what comes after an inflection point, shifting our approach, attitude,
and technology toward data. Mathematically, an inflection point is a magic moment
at which a curve stops bending one way and starts curving in the other direction. It’s a
point that the old picture dissolves, giving way to a new one.

This won’t be the first or the last inflection point in the evolution of data manage‐
ment. However, it is the one that is most relevant now. There are drivers and empiri‐
cal signals that point us in a new direction. I personally found myself at this turning
point in 2018. When many of our clients at ThoughtWorks, a global technology con‐
sultancy, simultaneously were seeking for a new data architecture that could respond
to the scale, complexity, and aspirations of their business. After reading this chapter, I
hope that you too arrive at this critical point, where you feel the urge for change, to

13

wash away some of the fundamental assumptions made about data, and imagine
something new.

Figure 1-1 is a simplistic demonstration of the inflection point in question. The x-axis
represents the macro drivers that have pushed us to this inflection point. They
include an ever-increasing business complexity combined with uncertainty, prolifera‐
tion of data expectations and use cases, and the availability of data from ubiquitous
sources. On the y-axis we see the impact of these drivers on business agility, ability to
get value from data and resilience to change. In the center is the inflection point,
where we have a choice to make. To continue with our existing approach and, at best,
reach a plateau of impact, or take the Data Mesh approach with the promise of reach‐
ing new heights in the agility of acting on data, immunity to rapid change, and being
able to get value from data at a larger scale. Part II of this book will go through the
details of what the Data Mesh approach entails.

Figure 1-1. "e in!ection point of the approach to data management

In this chapter, I share today’s data landscape realities that are the main drivers for
Data Mesh.

14 | Chapter 1: The In!ection Point

1 Christoph Windheuser, What is Intelligent Empowerment?, (ThoughtWorks, 2018).

Great Expectations of Data
One of the perks of being a technology consultant is traveling through many indus‐
tries and companies, and getting to know their deepest desires and challenges.
Through this journey, one thing is evident: being a data-driven organization remains
one of the top strategic goals of executives.

Here are a few examples, all truly inspiring:

Our mission at Intuit is to power prosperity around the world as an AI-driven expert plat‐
form company, by addressing the most pressing #nancial challenges facing our consumer,
small business and self-employed customers.

—Financial SaaS Company

Our mission is to improve every single member’s experience at every single touchpoint
with our organization through data and AI.

—Healthcare provider and payer company

By People, For People: We incorporate human oversight into AI. With people at the
core, AI can enhance the workforce, expand capability and benefit society as a whole.

—Telco

No matter the industry or the company, it’s loud and clear, we want to become intelli‐
gently empowered1 to:

• provide the best customer experience based on data and hyper-personalization
• reduce operational costs and time through data-driven optimizations
• empower employees to make better decisions with trend analysis and business

intelligence

All of these scenarios require data--a high volume of diverse, up-to-date, and truthful
data that can, in turn, fuel the underlying analytics and machine learning models.

A decade ago, many companies’ data aspirations were mainly limited to business
intelligence (BI). They wanted the ability to generate reports and dashboards to man‐
age operational risk, respond to compliance, and ultimately make business decisions
based on the facts, on a slower cadence. In addition to BI, classical statistical learning
has been used in pockets of business operations in the industries such as insurance,
healthcare, and finance. These early use cases, delivered highly specialized teams,
have been the most influential drivers for many past data management approaches.

Great Expectations of Data | 15

https://medium.com/intuit-engineering/the-intuit-data-journey-d50e644ed279
https://about.att.com/sites/labs_research/ai
https://www.thoughtworks.com/insights/blog/what-intelligent-empowerment
https://www.thoughtworks.com/insights/blog/what-intelligent-empowerment

Today, data aspirations have evolved beyond business intelligence to every aspect of
an organization, using machine learning in the design of the products, such as auto‐
mated assistants, in the design of our services and experience of our customers, such
as personalized healthcare, and streamlining operations such as optimized real-time
logistics. Not only that, the expectation is to democratize data, so that the majority of
the workforce can put data into action.

Meeting these expectations requires a new approach to data management. An
approach that can seamlessly fulfill the diversity of modes of access to data. Access that
ranges from a simple structured view of the data for reporting, to a continuously
reshaping semi-structured data for machine learning training; from real-time fine-
grained access to events to aggregations. We need to meet these expectations with an
approach and architecture that natively supports diverse use cases and does not
require copying data from one technology stack to another across the organization so
that we can meet the needs of yet another use case.

More importantly, the widespread use of machine learning requires a new attitude
toward application development and data. Need to move from deterministic and
rule-based applications - where given a specific input data, the output can be deter‐
mined - to nondeterministic and probabilistic data-driven applications - where given
a specific input data, the output could be a range of possibilities which can change
over time. This approach to application development requires continuous refining of
the model over time, and continuous, frictionless access to the latest data.

The great and diverse expectations of data require us to step back, acknowledge the
accidental technical complexities that we have created over time, and wonder if there
is a simpler approach to data management that can universally address the diversity
of needs today, and beyond.

The Great Divide of Data
Many of the technical complexities organizations face today stem from how we have
divided the data -- operational and analytical data, siloed the teams that manage
them, proliferated the technology stacks that support them and how we have integra‐
ted them.

Today, we have divided the data and its supporting technology stacks and architec‐
ture into two major categories: operational data: databases that support running the
business and keeping the current state of the business - also known as transactional
data; and analytical data: data warehouse or lake providing a historical, integrated
and aggregate view of data created as a byproduct of running the business. Today,
operational data is collected and transformed to form the analytical data. Analytical
data trains the machine learning models that then make their way into the opera‐
tional systems as intelligent services.

16 | Chapter 1: The In!ection Point

Figure 1-2. : "e two planes of data

Operational Data
Operational data sits in databases of microservices, applications, or systems of
records that support the business capabilities. Operational data keeps the current
state of the business. It is optimized for application’s or microservice’s logic and access
patterns. It often has a transactional nature. It’s referred to as data on the inside, pri‐
vate data of an application or a microservice that performs CRUD (create, update,
delete) operations on it. Operational data is constantly updated, so it’s access requires
reads and writes. The design has to account for multiple people updating the same
data at the same time in unpredictable sequences (hence the need for transactions).
The access is also about relatively in-the-moment activity. Operational data is record‐
ing what happens in the business, supporting decisions that are specific to the busi‐
ness transaction. In short, operational data is used to run the business and serve the
users.
Imagine a digital media streaming business that streams music, podcast and other
digital content to its subscribers and listeners. Registration service implements the
business function of registering new users or unregistering them. The database that

The Great Divide of Data | 17

https://queue.acm.org/detail.cfm?id=3415014

2 Definition provided by William H. Inmon known as the father of data warehousing.

supports the registration and deregistration process, keeping the list of users, is con‐
sidered operational data.

INTRODUCING DAFF INC.
Daff Inc. is a global digital streaming company, that started its journey with streaming
music and rapidly growing to provide other digital audio experiences such as sharing
podcasts, radio shows and audio books. Daff Inc. serves both paid and free subscrib‐
ers. Daff ’s mission is to get everyone’s audio content heard; from independent artists,
podcasters, to record labels and larger publishers. Daff hosts social events to connect
the audience with the performers.

Daff Inc. is making big investments in a robust data and AI infrastructure to become
data-driven; use their data to optimize every single aspect of their business. Serve the
listeners with recommendations specialized to their taste, mood, time of day and
location; empower the artists with information about their listeners such as locations,
listeners profile, campaign results to help them refine their work; optimize the quality
of their digital services using users and digital players captured events; and ultimately
streamline their business operations such as artist onboarding, payments and adver‐
tisements using up to date and accurate data.

The word ‘Daff ’ is the name of a Persian percussion instrument, dated more than
3000 years.

Analytical Data
Analytical data is the temporal, historic and often aggregated view of the facts of the
business over time. It is modeled to provide retrospective or future-perspective
insights. Analytical data is optimized for analytical logic - training machine learning
models, creating reports and visualizations. Analytical data is called data on the out‐
side, data directly accessed by analytical consumers. Analytical data is immutable and
has a sense of history. Analytical use cases require looking for comparisons and
trends over time, while a lot of operational uses don’t require much history. The origi‐
nal definition of analytical data as a nonvolatile, integrated, time variant collection of
data2 still remains valid.

In short, analytical data is used to optimize the business and user experience. This is
the data that fuels the AI and analytics aspirations that we talked about in the previ‐
ous section.

For example, in the case of Daff Inc. it’s important to optimize the listeners’ experi‐
ence with playlists recommended based on their music taste and favorite artists. The

18 | Chapter 1: The In!ection Point

https://queue.acm.org/detail.cfm?id=3415014
https://queue.acm.org/detail.cfm?id=3415014

analytical data that helps train the playlist recommendation machine learning model,
captures all the past behavior of the listener as well as all characteristics of the music
the listener has favored. This aggregated and historical view is analytical data.

Over time, the analytical data plane itself has diverged into two generations of archi‐
tectures and technology stacks: initially data warehouse and followed by data lake;
with data lake supporting data science access patterns and preserving data in its origi‐
nal form, and data warehouse supporting analytical and business intelligence report‐
ing access patterns with data conforming to a centrally unified ontology. For this
conversation, I put aside the dance between the two technology stacks: data ware‐
house attempting to onboard data science workflows and data lake attempting to
serve data analysts and business intelligence.

Analytical and Operational Data Misintegration
The current state of technology, architecture and organization design is reflective of
the divergence of the analytical and operational data planes - two levels of existence,
integrated yet separate. Each plane operates under a different organizational vertical.
Business intelligence, data analytics and data science teams, under the leadership of
Chief Data and Analytics officer (CDAO), manage the analytical data plane, while
business units and their corresponding technology domains manage the operational
data. From the technology perspective, there are two independent technology stacks
that have grown to serve each plane, while there are some convergence such as infin‐
ite event logs.

This divergence has led to the two-plane data topology and a fragile integration archi‐
tecture between the two. The operational data plane feeds the analytical data plane
through a set of scripts or automated processes often referred to as ETL jobs -
Extract, Transform, and Load. Often operational databases have no explicitly defined
contract with the ETL pipelines for sharing their data. This leads to fragile ETL jobs
where unanticipated upstream changes to the operational system and their data leads
to downstream pipeline failures. Over time the ETL pipelines grow in complexity try‐
ing to provide various transformations over the operational data, flowing data from
the operational data plane to the analytical plane, and back to the operational plane.

The Great Divide of Data | 19

https://martinfowler.com/bliki/DataLake.html
https://cloud.google.com/bigquery-ml/docs
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html

3 https://www.bbva.com/en/five-vs-big-data

Figure 1-3. Pipeline-based integration of the data planes

The challenges of the two-plane data management approach with a brittle integration
through pipelines, and a centralized data warehouse or lake for access to data is a
major driver to reimagine the future solutions.

Scale, Encounter of a New Kind
Since the mid 2000s, we have evolved our technologies to deal with the scale of the
data in terms of its volume, velocity and variety. We built the first generation batch
data processing to manage the large volume of data that our applications and touch‐
points generated, we built stream processing architectures to handle the speed of data
that started flowing from our mobile devices, and built different types of storage sys‐
tems to manage the diversity of data, text, imaging, voice, graphs, files, etc. Then we
got carried away and kept tagging more Vs to data to encourage access to clean data -
veracity - and aim to get value3 from data.

Today, we are encountering a new kind of scale, the origins and location of the data.
The data-driven solutions often require access to data beyond a business domain,
organizational or technical boundary. The data can be originated from every system
that runs the business, from every touchpoint with customers, and from other organ‐
izations. The next approach to data management needs to recognize the proliferation
of the origins of the data, and their ubiquitous nature.

The most interesting and unexpected patterns emerge when we connect data from a
variety of sources, when we can have access to information that is beyond the trans‐
actional data that we generate running our business. The future of intelligent health‐
care requires a longitudinal human record of a patient’s diagnostics, pharmaceutical
records, personal habits, etc. and in comparison with all other patients’ history. These

20 | Chapter 1: The In!ection Point

4 Donald Knuth made the statement, “(code) premature optimization is the root of all evil.”

sources are beyond a single organization’s control. The future of intelligent banking
requires data beyond the financial transactions that customers perform with their
banks. They’ll need to know the customers’ housing needs, the housing market, their
shopping habits, their dreams, to offer them the services they need, when they need
it.

This unprecedented scale of diversity of sources, requires a shift in data management.
A shift away from collecting data from sources into one big centralized place, repeat‐
edly across every single organization, to connecting data, wherever it is.

Beyond Order
I’m writing this book during the pandemic of 2020-2021. If there was any doubt that
our organizations need to navigate complexity, uncertainty and volatility, the pan‐
demic has made that abundantly clear. Even on a good day outside of the pandemic,
the complexity of our organizations demand a new kind of immunity, immunity to
change.

The complexity that has risen from the ever changing landscape of a business is also
reflected in the data. Rapid delivery of new features to products, new and changed
offerings and business functions, new touchpoints, new partnerships, new acquisi‐
tions, all result in a continuous reshaping of the data.

More than ever now, organizations need to have the pulse of their data and the ability
to act quickly and respond to change with agility.

What does this mean for the approach to data management? It requires access to the
quality and trustworthy facts of the business at the time they happen. The data plat‐
forms must close the distance - time and space - between when an event happens, and
when it gets consumed and processed for analysis. The analytics solutions must guide
real time decision making. Rapid response to change is no longer a premature optimi‐
zation4 of the business; it’s a baseline functionality.

Data management of the future must build-in change, by default. Rigid data model‐
ing and querying languages that expect to put the system in a straitjacket of a never-
changing schema can only result in a fragile and unusable analytics system.

Data management of the future must embrace the complex nature of today’s organi‐
zations and allow for autonomy of teams with peer-to-peer data collaborations.

Today, the complexity has stretched beyond the processes and products to the tech‐
nology platforms themselves. In any organization, the solutions span across multiple
cloud and on-prem platforms. The data management of the future must support

Beyond Order | 21

managing and accessing data across multiple cloud providers, and on-prem data cen‐
ters, by default.

Approaching the Plateau of Return
In addition to the seismic shifts listed above, there are other telling tales about the
mismatch between data and AI investment and the results. To get a glimpse of this, I
suggest you browse the NewVantage Partners annual reports; an annual survey of
senior corporate c-executives on the topics of data and AI business adoption. What
you find is the recurring theme of an increasing effort and investment in building the
enabling data and analytics platforms, and yet experiencing low success rates.

For example, in their 2021 report, only 26.8% of firms reported having forged a data
culture. Only 37.8% of firms reported that they have become data-driven, and only
45.1% of the firms reported that they are competing using data and analytics. It’s too
little result for the pace and amount of investment; 64.8% of surveyed companies
reported greater than $50MM investment in their Big Data and AI strategies.

Despite continuous effort and investment in one generation of data and analytics
platforms to the next, the organizations find the results middling.

I recognize that the organizations face a multi-faceted challenge in transforming to
become data-driven; migrating from decades of legacy systems, resistance of a legacy
culture to rely on data, and competing business priorities.

The future approach to data management must look carefully at this phenomena,
why the solutions of the past are not producing a comparable result to the human and
financial investment we are putting in today. Some of the root causes include lack of
skill sets needed to build and run data and AI solutions, organizational, technology
and governance bottlenecks, friction in discovering, trusting, accessing and using
data.

Recap
As a decentralized approach to managing data, Data Mesh embraces the data realities
of organizations today, and their trajectory, while acknowledging the limitations our
solutions face today.

Data Mesh assumes a new default starting state: proliferation of data origins within
and beyond organizations boundaries, on one or across multiple cloud platforms. It
assumes a diverse range of use cases for analytical data from hypothesis-driven
machine learning model development to reports and analytics. It works with a highly
complex and volatile organizational environment and not against it.

22 | Chapter 1: The In!ection Point

https://apnews.com/press-release/business-wire/technology-business-stock-markets-north-america-lung-disease-6c256b3af23f4f04978befb6e671e56d

In the next two chapters, I set the stage further. Next, we look at our expectations
from Data Mesh as a post-inflection-point solution. What organizational impact we
expect to see, and how Data Mesh achieves them.

Recap | 23

CHAPTER 2

After The In!ection Point

A note for Early Release readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

"e only way to make sense out of change is to plunge into it, move with it, and join the
dance.

—Alan Watts

Standing at an inflection point is a magical experience. It’s where we learn and depart
from the past and choose a new path. It’s a point where we have a choice to turn to a
new direction. The rest of this book provides instructions on how to move toward
this new direction with Data Mesh. We will discuss what constitutes Data Mesh in
Part II, how to architect it in Part III, and how to begin executing it in Part IV. How‐
ever, before we dive into that, in this chapter, I’d like to introduce Data Mesh based on
its impact on organizations, given the environmental conditions it operates in, and the
issues from the past solutions it must address.

Data Mesh must accept the environmental conditions that we discussed in Chapter 1,
as the default starting point. It must assume, by default, the ubiquitous nature of the
data. Data can be of any origin, it can come from systems within an organization, or
outside, beyond the boundary of organizational trust. It can be physically served by

25

any underlying platform on one cloud hosting or another. Data Mesh must embrace
the diversity of the use cases and their unique modes of access to data. The use cases
range from historical data analysis and reporting, training machine learning models
and data-intensive applications. Each needs to read data in a different format, in the
spectrum of graphs, files, tables and events. An ever increasing complexity of the busi‐
ness landscape--its diversity of functions, continuous change, and need for real-time
decision making in volatile times--is the organizational reality within which Data
Mesh must succeed.

Data Mesh must learn from the past solutions and address their shortcomings. It must
reduce points of centralization that act as coordination bottlenecks. It must find a new
way in decomposing the data architecture that, unlike technology-driven decomposi‐
tion, does not slow the organization down with multi-point synchronizations. It must
remove the gap between where the data originates and where it gets used in its analyt‐
ical form, and remove all the accidental complexities - aka pipelines - that happen in
between the two planes of data. Data Mesh must depart from data myths such as a
single source of truth, or one tightly-controlled canonical model.

Ultimately, Data Mesh’s goal is to enable organizations to thrive in the face of the
growth of data sources, growth of data users and use cases, and the increasing change
in cadence and complexity. Adopting Data Mesh, organizations must thrive in agility,
creating data-driven value while embracing change.

Figure 2-1 lists the expected organizational outcomes applying Data Mesh, as the
organization size and complexity grows, as the diversity of data and organization’s
data aspirations scale.

Figure 2-1. Data Mesh outcomes for organizations

In this chapter we look at the top-level outcomes that your organization achieves by
adopting Data Mesh, the impact of Data Mesh and why you should care about it. For
each of these outcomes, I discuss how Data Mesh accomplishes them, what shifts it
creates. In discussing the shifts I give you a brief description of the foundational prin‐
ciples of Data Mesh -- Domain Data Ownership, Data as a Product, Self-serve Data
Platform, Computational Federated Governance.You will see these in action and I
point you to Part II and Part III of the book where you can get all the details.

26 | Chapter 2: After The In!ection Point

Embrace Change in a Complex, Volatile and Uncertain
Business Environment
Businesses are complex systems, composed of many domains that each have their
own accountability structure, goals, and each changing at a different pace. The behav‐
ior of the business as a whole is the result of an intricate network of relationships
between its domains and functions, their interactions and dependencies. The volatil‐
ity and rapid change of the markets and regulations within which the businesses
operate compounds the complexity.

How can businesses manage the impact of such complexity on their data? How can
organizations keep going through change while continuing to get value from their
data? How can businesses avoid increased cost of managing the change of their data
landscape? How can they provide truthful and trustworthy data without disruption,
in the face of continuous change? This comes down to embracing change in a complex
organization.

In this section I discuss a few ways Data Mesh achieves embracing change despite
increased complexity of the business.

Align Business, Tech and Now Analytical Data
One way to manage complexity is to break it down into independently managed
parts . Businesses do this by creating domains. For example, Daff Inc. breaks down its
business domains according to relatively independent outcomes and functions--
including managing podcasts, managing artists, player applications, playlists, pay‐
ments, marketing, etc.

This allows the domains to move fast without tight synchronization dependencies to
other parts of the business.

Just as a business divides its work through business domains, technology can, and
should, align itself to these business divisions. We see the best organizations orienting
their technology staff around their business units, allowing each business unit to be
supported by a dedicated technology capability for that unit’s work. The recent move‐
ment towards Microservices is largely about performing this kind of decomposition.
As part of this we see business units controlling and managing their operational
applications and data.

The first principle of data mesh carries out the same decomposition for analytic data,
resulting in the Domain Ownership of Data. Each business unit takes on the responsi‐
bility for analytic data ownership and management. This is because the people who
are closest to the data are best able to understand what analytic data exists, and how it
should best be interpreted.

Embrace Change in a Complex, Volatile and Uncertain Business Environment | 27

Domain ownership distribution results in a distributed data architecture, where the
data artifacts - datasets, code, metadata, and data policies - are maintained by their
corresponding domains

Figure 2-2 is demonstrating the concept of organizing technology (services), analyti‐
cal data aligned with business.

Figure 2-2. Aligning business, tech and data to manage complexity

See Chapter 4, The Principle of Domain Ownership for further details.

Close The Gap Between Analytical and Operational Data
To make good decisions in the moment, analytical data must reflect business truthful‐
ness. They must be as close as possible to the facts and reality of the business at the
moment the decision is made. As we saw in Chapter 1, this can’t be achieved with two
separate data planes - analytical and operational data planes - that are far from each
other and connected through fragile data pipelines and intermediary data teams. Data

28 | Chapter 2: After The In!ection Point

pipelines must dissolve and give way to a new way of providing the analytical data
and capabilities as close to the source as possible.

Changes in the business, such as adding a new feature to a product, introducing a
new service, or optimizing a workflow, must be reflected near real time in both the
state of the business captured by operational data as well as its temporal view cap‐
tured by the analytical data.

Data Mesh suggests that we continue to recognize and respect the differences between
these two planes: the nature and topology of the data, the differing use cases, their
unique personas of consumers, and ultimately their diverse access patterns. However
Data mesh connects these two planes under a different structure - an inverted model
and topology based on domains and not technology stack - where each domain extends
its responsibilities to not only provide operational capabilities but also serve and
share analytical data as a product.
Data Mesh principles of Data as a Product introduces an accountability for the
domains to serve their analytical data as a product and delight the experience of data
consumers; streamlining their experience discovering, understanding, trusting, and
ultimately using quality data. Data as a product principle is designed to address the
data quality and the age-old siloed data problem, and their unhappy data consumers.
See Chapter 6, The Principle of Data as a Product for more on this.

Implementing this approach introduces a new architectural unit, called data product
quantum that will embed all the structural components needed to maintain and serve
data as a product. The structural components include the code that maintains the
data, additional information, metadata, to make data discoverable and usable, and a
contract to access the data in a variety of access modes native to the data consumers.

Figure 2-3 demonstrates a different integration model between operational and ana‐
lytical planes. You have seen these planes in chapter 1, integrated through clever and
complex data pipelines. Here, the planes are divided by business domains. The inte‐
gration between data product quantums, the analytical data plane, and their corre‐
sponding domain’s operational plane services are rather simple and unintelligent. A
simple movement of data. Data product quantums will embed and abstract the intelli‐
gence and code required to transform the operational data into its analytical form.

Embrace Change in a Complex, Volatile and Uncertain Business Environment | 29

Figure 2-3. Closing the gap between operational and analytical data

Differences in today’s available technology to manage the two archetypes of data
should not lead to the separation of organizations, teams, and people who work on
them. I believe that our technologies will evolve at some point in the future to bring
these two planes even closer together, but for now, I suggest we keep their concerns
separate. The primary focus of this book, and Data Mesh itself, is on the analytical
plane and its integration with the operational plane.

Localize Data Change to Business Domains
Data Mesh must allow for data models to change continuously without fatal impact to
downstream data consumers, or slowing down access to data as a result of synchro‐
nizing change of a shared global canonical model. Data Mesh achieves this by localiz‐
ing change to domains by providing autonomy to domains to model their data based
on their most intimate understanding of the business without the need for central
coordinations of change to a single shared canonical model.

Data Mesh imposes contracts, well-defined and guaranteed interfaces, to share data.
This liberates domains to change their data models, given that they still support the
older revisions of their contracts, until they gracefully migrate their data users to the
new revisions. Data Mesh introduces a set of discovery APIs that allow data product
users to locate and consume data according to the guarantees of the data discovery
APIs. See Chapter 4, The Principle of Domain Ownership and Chapter 5, The Princi‐
ple of Data as a Product for more on this.

30 | Chapter 2: After The In!ection Point

Reduce Accidental Complexity of Pipelines and Copying Data
As Fred Brooks laid out in his widely popular paper, “No Silver Bullet – Essence and
Accident in Software Engineering”, there are two types of complexity when building
software systems. First, the essential complexity: the complexity that is essential and
inherent to the problem space. This is the business and domain complexity we dis‐
cussed earlier. And second, the accidental complexity: the complexity that we - engi‐
neers, architects and designers - create in our solutions and can be fixed.

The world of analytical solutions is full of opportunities to remove and fix accidental
complexities. Let’s talk about a few of those accidental complexities that Data Mesh
must reduce.

Today, we keep copying data around because we need the data for yet another mode
of access, or yet another model of computation. We copy data from operational sys‐
tems to a data lake for data scientists. We copy the data again into lakeshore marts for
data analyst access and then into the downstream dashboard or reporting databases
for the last mile. We build complex and brittle pipelines to do the copying. The copy‐
ing journey continues across one technology stack to another and across one cloud
vendor to another. Today, to run analytical workloads you need to decide upfront
which cloud provider copies all of your data in its lake or warehouse before you can
get value from it.

Data Mesh addresses this problem by creating a new architectural unit that encapsu‐
lates a domain-oriented data semantic, but yet provides multiple modes of access to
the data suitable for different use cases and users. This architectural unit is called the
Data Product Quantum. It will have a clear contract and guarantees to its readers, and
meet their native access mode, SQL, files, events, etc. Data product quantum can be
accessed anywhere across the internet and it provides access control and policy
enforcement necessary at the time of access, locally at its interface. Data product
quantum encapsulates the code that transforms and maintains its data. With abstrac‐
tion of transformation code inside a data product quantum, and accessing data
through data product quantum interfaces, the need for pipelines will go away.
Removing the brittle concept of pipeline reduces the opportunity for failure in case of
an upstream data change. Data Mesh introduces standardized interfaces to discover
and access every data product enabled by a self-serve infrastructure. See Chapter 8 on
the logical architecture of Data Mesh, and Chapter 9 for more details on the data
product quantum and Chapter 6, on self-serve data infrastructure.

Sustain Agility in the Face of Growth
Today, businesses’ successes are predicated on multi-faceted growth--new acquisi‐
tions, new service lines, new products, geolocation expansions and so on. All this
leads to new sources of data to manage and new data-driven use cases to build. Many

Sustain Agility in the Face of Growth | 31

http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
http://worrydream.com/refs/Brooks-NoSilverBullet.pdf

organizations slow down or plateau in the speed of delivering value from their data,
onboarding new data, or serving the use cases as they grow.

Data Mesh’s approach to sustain agility in the face of growth can be summarized in a
few techniques that aim to reduce bottlenecks, coordination, and synchronization.
Agility relies on business domains’ ability to achieve outcomes autonomously and
with minimal dependencies.

Remove Centralized and Monolithic Bottlenecks of the Lake or the
Warehouse
A centralized data team, managing a monolithic data lake or warehouse limits agility,
particularly as the number of sources to onboard or number of use cases grow. Data
Mesh looks carefully for centralized bottlenecks, particularly where they are the focal
point of multi-party synchronization, both from the human communication perspec‐
tive and architecture. These bottlenecks include data lakes and data warehouses.

Data Mesh proposes an alternative, a peer-to-peer approach in data collaboration
when serving and consuming data. The architecture enables consumers to directly
discover and use the data right from the source. For example, an ML training func‐
tion or a report, can directly access independent data products, without the interven‐
tion of a centralized architectural component such as a lake or a warehouse, and
without the need for an intermediary data (pipeline) team. See chapter 9 for details of
peer-to-peer data consumption through data product quantum’s output data ports
and input data ports.

Figure 2-4 demonstrates the conceptual shift. Each data product provides versioned
interfaces that allow peer-to-peer consumption of domain-data to compose aggre‐
gates or higher-order data products.

Figure 2-4. Removing centralized bottlenecks

32 | Chapter 2: After The In!ection Point

Reduce Coordination of Data Pipelines
Over the last decades, the technologies that have exceeded in their operational scale
have one thing in common, they have minimized the need for coordination and syn‐
chronization. Asynchronous IO has scaled the throughput of networked applications
over blocking IO. Reactive applications, for example, have resulted in faster parallel
processing of messages. Apache Hadoop scaled data processing by running Map‐
Reduce functional programming model across many servers distributedly. Using
choreographed event-driven microservices over centrally orchestrated ones has
allowed us to scale our business workflows.

Despite our relentless effort to remove coordination and synchronization from our
core technologies in order to achieve scale and speed, we have, for the most part,
neglected organizational and architectural coordination. As a result, no matter how
fast our computer systems run, achieving outcomes have fallen behind coordinating
activities of teams and humans.

Data Mesh addresses two of the main coordination issues in the data management
processes and architecture. A technically-divided architecture of a pipeline - inges‐
tion, processing, serving, etc. - results in the coordination of these functions to
deliver a new data source, or serve a new use case. Data Mesh moves away from
technical-partitioning of data management, to domain-oriented partitioning.
Domain-oriented data products must be able to develop and evolve independently of
other data products. The domain-oriented decomposition reduces the need for coor‐
dination to achieve an outcome. For the most part, a new data source or a new use
case can be served by a domain-oriented data product team. In cases where a new use
case requires access to a new data product outside of the domain, the consumer can
make progress by utilizing the standard contracts of the new data product, mocks,
stubs, or synthetic data interfaces until the data product becomes available. This is the
beauty of contracts, easing the coordination between consumer and provider during
development. See chapter 4, The Principle of Domain Ownership for more on this.

Reduce Coordination of Data Governance
Today, another major coordination bottleneck is the central function of data gover‐
nance. Data governance coordination is necessary to provide access to data users,
approve the quality of datasets, and validate the conformance of data changes with
the organization’s policies.

Data Mesh introduces a federated and computational data governance model, where
the governance team is composed of the individual domain data product owners, the
main owners of the data products. The governance function aims to embed policy
execution into every data product in a computational and automated fashion. This
vastly improves the function of governance today, which is one of the main synchro‐

Sustain Agility in the Face of Growth | 33

https://en.wikipedia.org/wiki/Asynchronous_I/O
https://www.reactivemanifesto.org/
https://en.wikipedia.org/wiki/Apache_Hadoop
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://en.wikipedia.org/wiki/Synthetic_data

nization points for discovering data, approving data, and making sure it follows the
necessary policies.

As you can imagine, the autonomy of the domains can have undesirable conse‐
quences if not checked; isolation of domains, incompatibility and disconnection of
one domain’s data product from others, and a fragmented experience when consum‐
ing multiple domains’ data. Data Mesh governance heavily relies on the automation
of governance concerns for a consistent, connected and trustworthy experience using
the domains’ data products.

See Chapter 7, The Principle of Federated Computational Governance.

Enable Autonomy
The correlation between team autonomy and team performance has been the subject
of team management studies. Empirical studies show that teams’ freedom in decision
making to fulfill their mission can lead to better team performance. On the other
hand, too much autonomy can result in inconsistencies, duplicated efforts and team
isolation.

Data Mesh attempts to strike a balance between team autonomy and inter-term inter‐
operability and collaboration, with a few complementary techniques. It gives domain
teams autonomy to have control of their local decision making, such as choosing the
best data model for their data products. While it uses the computational governance
policies to impose a consistent experience across all data products; for example,
standardizing on the data modeling language that all domains utilize.

Domain teams are given autonomy to build and maintain the lifecycle of their data
products. While Data Mesh places a domain-agnostic data platform team who
empowers the domain teams with self-serve capabilities to manage the lifecycle of
data products declaratively and consistently, to prevent team isolation and decrease
cost of autonomy.

The principles of self-serve data platform, essentially makes it feasible for domain
teams to manage the lifecycle of their data products with autonomy, and utilize the
skillsets of their generalist developer to doso.

These self-serve data infrastructure APIs allow data product developers to build,
deploy, monitor and maintain their data products. The APIs allow data consumers to
discover, learn, access, and use the data products. The self-serve infrastructure makes
it possible for the mesh of data products to be joined, correlated and used as a whole,
while maintained independently by the domain teams.

See Chapter 6, The Principle of Self-serve Data Platform, for more.

34 | Chapter 2: After The In!ection Point

https://ir.library.oregonstate.edu/downloads/vh53wx53x

Increase the Ratio of Value from Data to Investment
Industry reports, such as the NewVantage Partner I shared in chapter 1, and my per‐
sonal experience, point to the fact that we are getting little value from data compared
to the investments we are making in data management. If we compare the value we
get from our data teams and data solutions, compared to other technical develop‐
ments such as infrastructure, mobile and application development, it’s evident that we
are facing headwinds when it comes to data.

Data Mesh looks at ways to improve the ratio of value over effort in analytical data
management: creation of a new archetype of data platform that abstracts today’s tech‐
nical complexity, through open data interfaces that enable sharing data across organi‐
zational trust boundary or physical location, and through applying product thinking
to remove friction across all stages of the value stream that gets analytical data from
the points of origin to the hands of data scientists and analysts.

Abstract Technical Complexity with a Data Platform
Today’s landscape of data management technology is undoubtedly too complex. The
litmus test for technical complexity is the ever growing need for data engineers and
data technology experts. We don’t seem to ever have enough of them. Another litmus
test is the low value to effort ratio of data pipeline projects. Much effort is spent with
little value returned - getting access to baseline datasets with quality.

Data Mesh looks critically at the existing technology landscape, and reimagines the
technology solutions as a data-product-developer(or consumer)-centric platform. In
chapter 6, The Principle of Self-Serve Data Platform, we will see how Data Mesh
arrives at a set of self-serve data platform capabilities to remove friction and complex‐
ity from the workflows of data product developers and data product users. Data Mesh
intends to remove the need for data specialists and enable generalist experts to
develop data products.

Additionally, Data Mesh defines a set of open interfaces for different affordances of
data products - discovering, querying, serving data, etc. - to enable a more collabora‐
tive ecosystem of tools. This is in contrast to a heavily proprietary data technology
landscape with a high cost of integration across vendors. See chapter 9 on data prod‐
ucts’ open interfaces.

Embed Product Thinking Everywhere
Data Mesh introduces a few shifts to get us laser focused on the value, as perceived by
the data users. It shifts our thinking from data as an asset to data as a product. It shifts
how we measure success from the volume of the data to measure to the happiness
and satisfaction of the data users. See chapter 5, The Principle of Data as a Product,
for more details on achieving this shift.

Increase the Ratio of Value from Data to Investment | 35

Data is not the only component of a Data Mesh ecosystem that is treated as a product.
The self-serve data platform itself is also a product. In this case, it serves the data
product developers and data product consumers. Data Mesh shifts the measure of
success of the platform from the number of its capabilities, to the impact of its capa‐
bilities on improving the experience of data product development, the reduced lead
time to deliver, or discover and use of a data product. See chapter 5, The Principle of
Self-Serve Data Platform for more on this.

Go Beyond The Boundaries
The value that a business unit can generate almost always requires data beyond the
unit’s boundary, requiring data that comes from many different business domains.
Similarly, the value that an organization can generate serving its customers, employ‐
ees, and partners often requires access to data beyond the data that the organization
generates and controls.

Consider Daff Inc. In order to provide a better experience to the listeners with auto-
play music, it not only requires data from listeners’ playlist, but also their network, as
well as their social and environmental influences and behaviors. It requires data from
many corners of Daff Inc, and beyond including news, weather, social platforms, etc.

Multi-domain and multi-org access to data is an assumption built into Data Mesh.
Data Mesh’s data product concept can provide access to data no matter where the data
physically resides. Data product quantum provides a set of interfaces that essentially
allow anyone with the proper access control, discover, and use the data product inde‐
pendent of its physical location. The identification schema, access control and other
policy enforcement assumes using open protocols that can be enabled over the inter‐
net. See chapter 8, Data Mesh Logical Architecture for more on this.

Recap
After reading this chapter you might assume that Data Mesh is a silver bullet. Quite
the contrary. Data Mesh is an important piece of the puzzle. It enables us to truly
democratize access to data. However to close the loop of deriving value from data,
there is much more that needs to be done beyond just getting access to data. We must
be able to continuously deliver analytical and ML-based solutions. However boot‐
strapping this closed loop, requires access to data at scale, which is a focus of Data
Mesh.

The Data Mesh goals listed in this chapter, invites us to reimagine data, how to archi‐
tect solutions to manage it, how to govern it, and how to structure our teams . The
expectation to become resilient to business complexity, to sustain agility in the face of
growth, and accelerate getting value from data pushes us to work with the reality of
increasing complexity, growth and volatility instead of fighting to control it.

36 | Chapter 2: After The In!ection Point

In the next chapter, I will give an overview of what has happened before the inflection
point. Why the data management approach that got us here, won’t take us to the
future.

Recap | 37

CHAPTER 3

Before The In!ection Point

A note for Early Release readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Today’s problems come from yesterday’s “solutions.”
—Senge, Peter M. The Fifth Discipline

Organizational complexity, growth of data sources, proliferation of data expectations.
These are the forces that have put stress on our existing approaches to analytical data
management. Our existing methods have made remarkable progress scaling the
machines: manage large volumes of a variety of data types with planet scale dis‐
tributed data storage, reliably transmit high velocity data through streams, and pro‐
cess data intensive workloads, concurrently and fast. However, our methods have
limitations with regard to the organizational complexity and scale, the human scale.

In this chapter, I give a short introduction to the current landscape of data architec‐
tures, their underlying characteristics and the reasons why, moving into the future,
they limit us.

39

Evolution of Analytical Data Architectures
How we manage analytical data has gone through evolutionary changes; changes
driven by new consumption models, ranging from traditional analytics in support of
business decisions to intelligent business functions augmented with ML. While we
have seen an accelerated growth in the number of analytical data technologies, the
high level architecture has seen very few changes. Let’s have a quick browse of the high
level analytical data architectures, followed by a review of their unchanged character‐
istics.

The underlying technologies supporting each of the following
architectural paradigms have gone through many iterations and
improvements. The focus here is on the architectural pattern, and
not the technology and implementation evolutions.

First Generation: Data Warehouse Architecture
Data warehousing architecture today is influenced by early concepts such as facts and
dimensions formulated in the 1960s. The architecture intends to flow data from
operational systems to business intelligence systems that traditionally have served the
management with operations and planning of an organization. While data warehous‐
ing solutions have greatly evolved, many of the original characteristics and assump‐
tions of their architectural model remain the same:

• Data is extracted from many operational databases and sources
• Data is transformed into a universal schema - represented as a multi-dimensional

and time-variant tabular format
• Data is loaded into the warehouse tables
• Data is accessed through SQL-like querying operations
• Data is mainly serving data analysts for their reporting and analytical visualiza‐

tions use cases

The data warehouse approach is also referred to as data marts with the usual distinc‐
tion that a data mart serves a single department in an organization, while a data ware‐
house serves the larger organization integrating across multiple departments.
Regardless of their scope, from the architectural modeling perspective they both have
similar characteristics.

In my experience, the majority of enterprise data warehouse solutions are proprietary,
expensive and require specialization for use. Over time, they grow to thousands of
ETL jobs, tables and reports that only a specialized group can understand and main‐
tain. They don’t let themselves to modern engineering practices such as CI/CD and

40 | Chapter 3: Before The In!ection Point

https://www.amazon.com/Data-Warehouse-Toolkit-Definitive-Dimensional/dp/1118530802/ref=sr_1_1?crid=3N78P575JM6GY&dchild=1&keywords=data+warehouse+toolkit&qid=1612060089&sprefix=data+wareh%2Caps%2C358&sr=8-1
https://www.amazon.com/Data-Warehouse-Toolkit-Definitive-Dimensional/dp/1118530802/ref=sr_1_1?crid=3N78P575JM6GY&dchild=1&keywords=data+warehouse+toolkit&qid=1612060089&sprefix=data+wareh%2Caps%2C358&sr=8-1
https://www.thoughtworks.com/radar/platforms/enterprise-data-warehouse

incur technical debt over time and an increased cost of maintenance. Organizations
attempting to escape this debt, find themselves in an inescapable cycle of migrating
from data warehouse solution to another.

Figure 3-1. Analytical data architecture - warehouse

Second Generation: Data Lake Architecture
Data lake architecture was introduced in 2010 in response to challenges of data ware‐
housing architecture in satisfying the new uses of data; access to data based on data
science and machine learning model training workflows, and supporting massively
parallelized access to data. Data lake architecture, similarly to data warehouse,
assumes that data gets extracted from the operational systems and is loaded into a
central repository often in the format of an object store, storage of any type of data.
However unlike data warehousing, data lake assumes no or very little transformation
and modeling of the data upfront; it attempts to retain the data close to its original
form. Once the data becomes available in the lake, the architecture gets extended with
elaborate transformation pipelines to model the higher value data and store it in lake‐
shore marts.

This evolution to data architecture aims to improve ineffectiveness and friction intro‐
duced by extensive upfront modeling that data warehousing demands. The upfront
transformation is a blocker and leads to slower iterations of model training. Addi‐
tionally, it alters the nature of the operational system’s data and mutates the data in a

Evolution of Analytical Data Architectures | 41

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

way that models trained with transformed data fail to perform against the real pro‐
duction queries.

In our example, a music recommender when trained against a transformed and mod‐
eled data in a warehouse, fails to perform when evoked in an operational context -
e.g. evoked by the recommender service with the logged-in user’s session
information. The heavily transformed data used to train the model, either misses
some of the user’s signals or has created a different representation of users attributes.
Data lake comes to rescue in this scenario.

Notable characteristics of a data lake architecture include:

• Data is extracted from many operational databases and sources
• Data is minimally transformed to fit the storage format e.g. Parquet, Avro, etc.
• Data - as close as the source syntax - is loaded to scalable object storage
• Data is accessed through the object storage interface - read as files or data frames

- a two-dimensional array-like structure.
• Lake storage is accessed mainly for analytical and machine learning model train‐

ing use cases and used by data scientists
• Downstream from the lake, lake shore marts, are fit-for-purpose data marts or

data services serve the modeled data
• Lakeshore marts are used by applications and analytics use cases

42 | Chapter 3: Before The In!ection Point

Figure 3-2. Analytical data architecture - data lake

Data lake architecture suffers from complexity and deterioration; complex and
unwieldy pipelines of batch or streaming jobs operated by a central team of hyper-
specialized data engineers; deteriorated and unmanaged datasets, untrusted, inacces‐
sible, provide little value.

Third Generation: Multimodal Cloud Architecture
The third and current generation data architectures are more or less similar to the pre‐
vious generations, with a few modern twists:

• Streaming for real-time data availability with architectures such as Kappa
• Attempting to unify the batch and stream processing for data transformation

with frameworks such as Apache Beam
• Fully embracing cloud based managed services with modern cloud-native imple‐

mentations with isolated compute and storage
• Convergence of warehouse and lake, either extending data warehouse to include

embedded ML training, e.g. Google BigQuery ML, or alternatively build data

Evolution of Analytical Data Architectures | 43

http://milinda.pathirage.org/kappa-architecture.com
https://www.thoughtworks.com/radar/languages-and-frameworks/apache-beam
https://www.thoughtworks.com/radar/platforms/google-bigquery-ml

1 An early-stage venture capital firm in New York City

warehouse integrity, transactionality and querying systems into data lake solu‐
tions, e.g., Databricks Lakehouse

The third generation data platform is addressing some of the gaps of the previous
generations such as real-time data analytics, as well as reducing the cost of managing
big data infrastructure. However it suffers from many of the underlying characteris‐
tics that have led to the limitations of the previous generations.

Figure 3-3. https://a16z.com/2020/10/15/the-emerging-architectures-for-modern-data-
infrastructure Multimodal data architecture

Characteristics of Analytical Data Architecture
From the quick glance at the history of analytical data management architecture, it is
apparent that the architecture has gone through evolutionary improvements. The
technology and products landscape in support of the data management have gone
through a cambrian explosion and continuous growth. The dizzying view of First‐
Mark’s1 annual landscape and “state of the union” in big data and AI, is an indication
of the sheer number of innovative solutions developed in this space.

44 | Chapter 3: Before The In!ection Point

https://a16z.com/2020/10/15/the-emerging-architectures-for-modern-data-infrastructure
https://a16z.com/2020/10/15/the-emerging-architectures-for-modern-data-infrastructure
http://mattturck.com/wp-content/uploads/2020/09/2020-Data-and-AI-Landscape-Matt-Turck-at-FirstMark-v1.pdf

Figure 3-4. "e Cambrian explosion of big data and AI tooling - it’s not intended to be
read, just glanced and feel dizzy Courtesy of FirstMark

So the question is, what hasn’t changed? What are the underlying characteristics that
all generations of analytical data architecture carry? Despite the undeniable innova‐
tion, there are fundamental assumptions that have remained unchallenged for the last
few decades and must be closely evaluated:

• Data must be centralized to be useful - managed by a centralized organization,
with an intention to have an enterprise-wide taxonomy.

• Data management architecture, technology and organization are monolithic.
• The enabling technologies dictate the paradigm - architecture and organization.

Characteristics of Analytical Data Architecture | 45

http://mattturck.com/wp-content/uploads/2020/09/2020-Data-and-AI-Landscape-Matt-Turck-at-FirstMark-v1.pdf

The architectural characteristics discussed in this chapter, includ‐
ing centralization, are only applied to the logical architecture. Phys‐
ical architecture concerns such as where the data is physically
stored - whether it is physically collocated or not - is out of scope
for our conversation, and it’s independent of the logical architec‐
ture concerns. The logical architecture focuses on the experience
layer of the data developers and consumers. Such as whether data is
being managed by a single team or not - data ownership - whether
data has a single schema or not - data modeling - and whether a
change on one data model has tight coupling and impact on down‐
stream users - dependencies.

Let’s look a bit more closely at each of these underlying assumptions and the limita‐
tions each impose.

Monolithic
Architecture styles can be classified into two main types: monolithic (single deploy‐
ment unit of all code) and distributed (multiple deployment units connected through
remote access protocols)

—Fundamentals of Software Architecture

Monolithic Architecture
At 30,000 feet the data platform architecture looks like Figure 2-7 below; a monolithic
architecture whose goal is to:

• Ingest data from all corners of the enterprise and beyond, ranging from opera‐
tional and transactional systems and domains that run the business, to external
data providers that augment the knowledge of the enterprise. For example in the
case of Daff Inc., the data platform is responsible for ingesting a large variety of
data: the ‘media players performance', how their ‘users interact with the play‐
ers', ’songs they play', ‘artists they follow', ‘labels’ and ‘artists’ that the business has
onboarded, the ‘financial transactions’ with the artists, and external market
research data such as ‘customer demographic’ information.

• Cleanse, enrich, and transform the source data into trustworthy data that can
address the needs of a diverse set of consumers. In our example, one of the trans‐
formations turns the ‘user clicks stream’’ to ‘meaningful user journeys’ enriched
with details of the user. This attempts to reconstruct the journey and behavior of
the user into an aggregate longitudinal view.

• Serve the datasets to a variety of consumers with a diverse set of needs. This
ranges from data exploration, machine learning training, to business intelligence
reports. In the case of Daff Inc., the platform must serve ‘media player’s near real-

46 | Chapter 3: Before The In!ection Point

time errors’ through a distributed log interface and at the same time serve the
batched aggregate view of a particular ‘artist played record’ to calculate the
monthly financial payments.

Figure 3-5. "e 30,000 $ view of the monolithic data platform

While a monolithic architecture can be a good and a simpler starting point for build‐
ing a solution - e.g. managing one code base, one team - it falls short as the solution
scales. The drivers we discussed in Chapter 1, organizational complexity, proliferation
of sources and use cases, create tension and friction on the architecture and organiza‐
tional structure:

• Ubiquitous data and source proliferation: As more data becomes ubiquitously
available, the ability to consume it all and harmonize it in one place, logically,
under the control of a centralized platform and team diminishes. Imagine the
domain of ‘customer information’. There are an increasing number of sources
inside and outside of the boundaries of the organization that provide information
about the existing and potential customers. The assumption that we need to
ingest and harmonize the data under a central customer master data manage‐
ment to get value, creates a bottleneck and slows down our ability to take advan‐
tage of diverse data sources. The organization’s response to making data available
from new sources slows down as the number of sources increases.

•
• Organizations’ innovation agenda and consumer proliferation: Organizations’

need for rapid experimentation introduces a larger number of use cases that con‐
sume the data from the platform. This implies an ever growing number of trans‐
formations to create data - aggregates, projections and slices that can satisfy the
test and learn cycle of innovation. The long response time to satisfy the data con‐
sumer needs has historically been a point of organizational friction and remains
to be so in the modern data platform architecture. The disconnect between peo‐

Monolithic | 47

https://www.thoughtworks.com/insights/blog/how-implement-hypothesis-driven-development

ple and systems who are in need of the data and understand the use case, from
the actual sources, teams and systems, who originated the data and are most
knowledgeable about the data, impedes the company’s data-driven innovations. It
lengthens the time needed to access the right data, and becomes a blocker for
hypothesis-driven development.

•
• Organizational complexity: Adding a volatile and continuously shifting and

changing data landscape - data sources and consumers - to the mix, is when a
monolithic approach to data management becomes a synchronization and priori‐
tization hell. Aligning the priorities and activities of the continuously changing
data sources and consumers, with the capabilities and priorities of the monolithic
solution - isolated from the sources and consumers - is a no-win situation.

Monolithic Technology
From the technology perspective, the monolithic architecture has been in a harmo‐
nious accordance with its enabling technology; technologies supporting data lake or
data warehouse architecture, by default, assume a monolithic architecture. For exam‐
ple, data warehousing technologies such as Snowflake, Google BigQuery, or Synapse,
all have a monolithic logical architecture - architecture from the perspective of the
developers and users. While at the physical and implementation layer there has been
immense progress in resource isolation and decomposition - for example Snowflake
separates compute resource scaling from storage resources and BigQuery uses the lat‐
est generation distributed file system - the user experience of the technology remains
monolithic.

Data Lake technologies such as object storage and pipeline orchestration tools, can be
deployed in a distributed fashion. However by default, they do lead to creation of
monolithic lake architectures. For example, data processing pipeline DAG definition
and orchestrations’ lack of constructs such as interfaces and contracts abstracting
pipeline jobs dependencies and complexity, leads to a big ball of mod monolithic
architecture with tightly coupled labyrinthic pipelines, where it is difficult to isolate
change or failure to one step in the process. Some cloud providers have limitations on
the number of lake storage accounts, having assumed that there will only be a small
number of monolithic lake setups.

Monolithic Organization
From the organizational perspective, Conway’s Law has been at work and in full
swing with monolithic organizational structures - business intelligence team, data
analytics group, or data platform team - responsible for the monolithic platform, its
data and infrastructure.

48 | Chapter 3: Before The In!ection Point

https://www.snowflake.com/
https://cloud.google.com/bigquery
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://en.wikipedia.org/wiki/Big_ball_of_mud

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

—Melvin Conway, 1968

When we zoom close enough to observe the life of the people who build and operate
a data platform, what we find is a group of hyper-specialized data engineers siloed
from the operational units of the organization; where the data originates or where it is
used. The data engineers are not only siloed organizationally but also separated and
grouped into a team based on their technical expertise of data tooling, often absent of
business and domain knowledge.

Figure 3-6. Siloed hyper-specialized data team

I personally don’t envy the life of a data engineer. They need to consume data from
operational teams who have no incentive in providing meaningful, truthful and cor‐
rect data, based on an agreed-upon contract. Given the data team’s organizational silo,
data engineers have very little understanding of the source domains that generate the
data and lack the domain expertise in their teams. They need to provide data for a
diverse set of needs, operational or analytical, without a clear understanding of the
application of the data and access to the consuming domain’s experts.

For example at Daff Inc., on the source side we have a cross-functional ‘media player’
team that provide signals of how users interact with media player features e.g. ‘play
song events', ‘purchase events', and ‘play audio quality’; and on the other end sit a
cross-functional consumer team such as ’song recommendation’ team, ’sales team’
reporting sales KPIs, ‘artists payment team’ who calculate and pay artists based on
play events, and so on. Sadly, in the middle sits the data team that through sheer
effort provides analytical data on behalf of all sources and to all consumers.

In reality what we find are disconnected source teams, frustrated consumers fighting
for a spot on top of the data team’s backlog and an over stretched data team.

Monolithic | 49

The complicated monolith
Monolithic architectures when they meet scale - here, scale in diversity of sources,
consumers, and transformations - all face a similar destiny, becoming a complex and
difficult to manage system.

The complexity debt of the sprawling data pipelines, duct-taped scripts implementing
the ingestion and transformation logics, the large number of datasets - tables or files -
with no clear architectural and organizational modularity, and thousands of reports
built on top of those datasets, keeps the team busy paying the interest of the debt
instead of creating value.

In short, a monolithic architecture, technology and organizational structure is not
suitable for analytical data management of large scale and complex organizations.

Centralized
It’s an accepted convention that the monolithic data platform hosts and owns the data
that belongs to different domains, e.g. ‘play events', ’sales KPIs', ‘artists', ‘albums',
‘labels', ‘audio', ‘podcasts', ‘music events', etc.; collected from a large number of dispa‐
rate domains.

While over the last decade we have successfully applied domain driven design and
bounded context to the design of our operational systems to manage complexity at
scale, we have largely disregarded the domain driven design paradigm in a data plat‐
form. DDD’s strategic design introduces a set of principles to manage modeling at
scale, in a large and complex organization. It encourages moving away from a single
canonical model to many bounded contexts’ models. It defines separate models each
owned and managed by a unit of organization. It explicitly articulates the relation‐
ships between the models.

While operational systems have applied DDD’s strategic design techniques toward
domain-oriented data ownership, aligning the services and their data with existing
business domains, analytical data systems have maintained a centralized data owner‐
ship outside of the domains.

50 | Chapter 3: Before The In!ection Point

http://wiki.c2.com/?ComplexityAsDebt
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://www.amazon.com.au/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

Figure 3-7. Centralization of data with no clear data domain boundaries and domain-
oriented ownership of data

While this centralized model can work for organizations that have a simpler domain
with a smaller number of consumption cases, it fails for enterprises with rich and
complex domains.

In addition to limitations to scale, other challenges of data centralization include pro‐
viding quality data that is resilient to change; data that is as closely as possible is
reflective of the facts of the business with integrity. The reason for this is that business
domains and teams who are most familiar with the data, who are best positioned to
provide quality data right at the source, are not responsible for data quality. The cen‐
tral data team, far from the source of the data and isolated from the domains of the
data, is tasked with building quality back into the data through data cleansing and
enriching pipelines. Often, the data that pops out of the other end of the pipelines
into the central system loses its original form and meaning.

Centralization of the analytical data has been our industry’s response to the siloed
and fragmented data, commonly known as Dark Data. Coined by Gartner, Dark Data
refers to the information assets organizations collect, process and store during regular
business activities, but generally fail to use for analytical or other purposes.

Technology driven
Looking back at different generations of analytical data management architectures,
from warehouse to lake and all on the cloud, we have heavily leaned on a technology-
driven architecture. A typical solution architecture of a data management system
merely wires various technologies, each performing a technical function, a piece of an

Monolithic | 51

https://www.gartner.com/en/information-technology/glossary/dark-data

end to end flow. This is evident from a glance at any cloud provider’s modern solu‐
tion architecture diagram, like the one below. The core technologies listed below are
powerful and helpful in enabling a data platform. However, the proposed solution
architecture decomposes and then integrates the components of the architecture
based on their technical function and the technology supporting the function. For
example, first we encounter the ingestion function supported by Cloud Pub/Sub, then
publishing data to Cloud Storage which then serves data through BigQuery. This
approach leads to a technically-partitioned architecture and consequently an activity-
oriented team decomposition.

Figure 3-8. Modern analytical solutions architecture biased toward a technology-driven
decomposition - example from GCP https://cloud.google.com/solutions/build-a-data-
lake-on-gcp

52 | Chapter 3: Before The In!ection Point

https://cloud.google.com/solutions/build-a-data-lake-on-gcp
https://cloud.google.com/solutions/build-a-data-lake-on-gcp

Technically-Partitioned Architecture
One of the limitations of data management solutions today, comes down to how we
have attempted to manage its unwieldy complexity; how we have decomposed an
ever-growing monolithic data platform and team to smaller partitions. We have
chosen the path of least resistance, a technical partitioning for the high level architec‐
ture.
Architects and technical leaders in organizations decompose an architecture in
response to its growth. The need for on-boarding numerous new sources, or
responding to proliferation of new consumers requires the platform to grow. Archi‐
tects need to find a way to scale the system by breaking it into its top-level compo‐
nents.

Top-level technical partitioning, as defined by Fundamentals of Software Architecture,
decomposes the system into its components based on their technical capabilities and
concerns; it’s a decomposition that is closer to the implementation concerns than
business domain concerns. Architects and leaders of monolithic data platforms have
decomposed the monolithic solutions based on a pipeline architecture, into its tech‐
nical functions such as ingestion, cleansing, aggregation, enrichment, and serving. The
top-level functional decomposition leads to synchronization overhead and slow
response to data changes, updating and creating new sources or use cases. An alterna‐
tive approach is a top-level domain-oriented top-level partitioning, where these techni‐
cal functions are embedded to the domain, where the change to the domain can be
managed locally without top-level synchronization.

Figure 3-9. Top-level technical partitioning of monolithic data platform

Monolithic | 53

https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/

Activity-oriented Team Decomposition
The motivation behind breaking a system down into its architectural components is
to create independent teams who can each build and operate an architectural compo‐
nent. These teams in turn can parallelize work to reach higher operational scalability
and velocity. The consequence of top-level technical decomposition is decomposing
teams into activity-oriented groups, each focused on a particular activity required by a
stage of the pipeline. For example, a team focusing on ingestion of data from various
sources or a team responsible for serving the lakeshore marts. Each team attempts to
optimize their activity, for example find patterns of ingestion.

Though this model provides some level of scale, by assigning teams to different activ‐
ities of the flow, it has an inherent limitation that does not scale what matters: deliv‐
ery of outcome - in this case, delivery of new quality and trust-worthy data.
Delivering an outcome demands synchronization between teams and aligning
changes to the activities. Such decomposition is orthogonal to the axis of change or
outcome, and slows down the delivery of value and introduces organizational friction.

Conversely, an outcome-oriented team decomposition, optimized for achieving an
end to end outcome fast with low synchronization overhead.

Let’s look at an example. Daff Inc. started its services with ’songs’ and ‘albums', and
then extended to ‘music events', ‘podcasts', and ‘radio shows’. Enabling a single new
feature, such as visibility to the ‘podcasts play rate', requires a change in all compo‐
nents of the pipeline. Teams must introduce new ingestion services, new cleansing
and preparation as well as served aggregates for viewing podcast play rates. This
requires synchronization across implementation of different components and release
management across teams. Many data platforms provide generic and configuration-
based ingestion services that can cope with extensions such as adding new sources
easily or modifying the existing sources to minimize the overhead of introducing new
sources. However this does not remove an end to end dependency management of
introducing new datasets from the consumer point of view. The smallest unit that
must change to cater for a new functionality, unlocking a new dataset and making it
available for new or existing consumption, remains to be the whole pipeline - the
monolith. This limits our ability to achieve higher velocity and scale in response to
new consumers or sources of the data.

54 | Chapter 3: Before The In!ection Point

https://martinfowler.com/bliki/OutcomeOriented.html

Figure 3-10. Architecture decomposition is orthogonal to the axis of change (outcome)
when introducing or enhancing features, leading to coupling and slower delivery

We have created an architecture and organization structure that does not scale and
does not deliver the promised value of creating a data-driven organization.

Recap
The definition of insanity is doing the same thing over and over again, but expecting
different results.

—Albert Einstein

You made it, walking with me through the evolution of analytical data management
architecture. We looked at the current state of the two-plane division between opera‐
tional data and analytical data, and their fragile ETL-based integration model. We dug
deeper into the limitations of analytical data management; limitations to scale -
organizational scale in expansion of ubiquitous data, scale in diversity of usage pat‐
terns, scale in dynamic topology of data and need for rapid response to change. We
looked critically into the root causes of their limitations.

The angle we explored was architecture and its impact on the organization. We
explored the evolution of analytical data architectures from data warehousing, data
lake to multi-modal warehouse and lake on the cloud. While acknowledging the evo‐
lutionary improvement of each architecture, we challenged some of the fundamental
characteristics that all these architectures share: monolithic, centralized and technol‐
ogy driven. These characteristics are driven from an age-old assumption that to sat‐
isfy the analytical use cases, data must be extracted from domains, and consolidated
and integrated under central repositories of a warehouse or a lake. This assumption
was valid when the use cases of data were limited to low-frequency reports; it was
valid when data was being sourced from a handful of systems. It is no longer valid
when data gets sources from hundreds of microservices, millions of devices, from

Recap | 55

within and outside of enterprises. It is no longer valid that use cases for data tomor‐
row are beyond our imagination today.

We made it to the end of Part I. With an understanding of the current landscape and
expectations of the future, let’s move to Part II and unpack what Data Mesh is based
on its core principles.

56 | Chapter 3: Before The In!ection Point

1 Hawkins, Jeff; Blakeslee, Sandra. On Intelligence (p. 165). Henry Holt and Co.

PART II

What is Data Mesh

“... the only simplicity to be trusted is the simplicity to be found on the far side of complexity.”
—Alfred North Whitehead (Mathematician and Philosopher)

Data Mesh is a sociotechnical approach to share, access and manage analytical data in
complex and large-scale environments - within or across organizations.
Since the introduction of Data Mesh in my original post, kindly hosted by Martin
Fowler, I have noticed that people have struggled to classify the concept: Is Data Mesh
an architecture? Is it a list of principles and values? Is it an operating model? After all,
we rely on classi#cation of patterns1 as a major cognitive function to understand the
structure of our world. Hence, I have decided to classify Data Mesh as a sociotechnical
paradigm. An approach that recognizes the interactions between people and the tech‐
nical architecture and solutions in complex organizations. An approach to data man‐
agement that not only optimizes for the technical excellence of delivering analytical
data sharing solutions but also improves the experience of all people involved, data
providers, consumers and owners.

Data Mesh can be utilized as an element of an enterprise data strategy, articulating the
target state of both the enterprise architecture, as well as an organizational operating
model with an iterative execution model. Part III of this book focuses on its logical
architecture and Part IV focuses on the operating model and the execution.

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/
https://martinfowler.com/

2 Rogers, Everett (16 August 2003). Diffusion of Innovations, 5th Edition. Simon and Schuster. ISBN
978-0-7432-5823-4.

To get started with the understanding of Data Mesh, in this part of the book, I focus
on its foundational principles. These principles are propositions and values that guide
the behavior, structure and evolution of many Data Mesh implementations, yet to
come. My intention for this part of the book is to create a baseline that we all agree
upon, which then provides a foundation for the industry as a whole to create the
practices, implementations and technology to bring Data Mesh to life. The purpose of
the principles is to guide us all as we mature the evolution of our Data Mesh imple‐
mentations.

This book is being written at the time that Data Mesh is arguably still in the innovator,
early adopter phase of an innovation adoption curve.2 It’s at a phase that the venture‐
some innovators have embraced it and are already in the process of creating tools and
technologies around it, and the highly respected early adopters have demonstrated
shifting their data strategy and architecture inspired by Data Mesh. In fact in early
2020 InfoQ recognized Data Mesh as one of the innovator phase architectural trends.
Hence, it’s only appropriate to include the articulation of its principles and architec‐
tural style in my explanation of Data Mesh at this point in time, and leave the specific
implementation details and tools to you to refine and build over time. I anticipate
that any specific implementation design or tooling suggestion will be simply outdated
by the time you get to read this book.

The Principles
There are four simple principles that can capture what underpins the logical architec‐
ture and operating model of Data Mesh. These principles are designed to progress us
toward the objectives of Data Mesh: Increase getting value from data at scale, sustain
agility as an organization grows, and embrace change in a complex and volatile busi‐
ness context. These goals and their relationship to the principles were introduced in
<Chapter 2, After the Inflection Point>.

Here is a quick summary of the principles, and their motivation to achieve the Data
Mesh values:

Domain-oriented ownership

De#nition
Decentralize the ownership of sharing analytical data to business domains
who are closest to the data — either are the source of the data or its main
consumers. Decompose the data artefacts (data, code, metadata, policies) -
logically - based on the business domain they represent and manage their life

https://www.infoq.com/articles/architecture-trends-2020/

cycle independently. Essentially, align business, technology and analytical
data.

Motivations
• Ability to scale out data sharing and consumption aligned with the axes of

organizational growth: increased number of data sources, increased number
of data consumers, increased diversity of data use cases and mode of access
to data.

• Optimize for continuous change by localizing change to the business
domains.

• Enable agility by reducing cross-domain synchronizations by removing cen‐
tralized bottlenecks of data teams and warehouse or lake architecture.

• Increase data business truthfulness by closing the gap between the real origin
of the data, and where and when it is shared for analytical use cases.

• Increase resiliency of the analytics and ML solutions by removing complex
data pipelines.

Data as a Product

De#nition
• Existing or new business domains become accountable to share their data as

a product served to data users – data analysts and data scientists.
• Data as a product adhere to a set of usability characteristics such as below,

among others:
— Guarantee a list of explicitly defined data quality metrics
— Provide ease of usability and understability
— Be accessible through a diverse set of methods, native to the tools of a

spectrum of data users — analysts and scientists.
— Be Interoperabile and joinable with other domains’ data products.

Data as a product introduces a new unit of logical architecture called, data
product quantum, controlling and encapsulating all the structural compo‐
nents — data, code, policy and infrastructure dependencies — needed to
share data as a product autonomously.

Motivations
• Remove the possibility of creating low quality, untrustworthy domain-

oriented data silos.
• Enable a data-driven innovation culture, by streamlining the experience of

discovering and accessing high quality data — peer-to-peer — without fric‐
tion.

• Enable autonomy through development of clear contracts between domains’
data products with operational isolation — i.e. changing one shall not desta‐
bilize others.

• Getting higher value from data by sharing and using data easily across
organizational boundaries.

Self-serve Data Platform

De#nition
A new generation of self-serve data platform to empower domain-oriented
teams to manage the end-to-end life cycle of their data products, to manage a
reliable mesh of interconnected data products and share the mesh’s emergent
knowledge graph and lineage, and to streamline the experience of data con‐
sumers to discover, access, and use the data products.

Motivations
• Reduce the total cost of ownership of data in a decentralized domain-

oriented operating model and architecture.
• Abstract data management complexity and reduce cognitive load of domain

teams in managing the end-to-end life cycle of their data products.
• Enable a larger population of developers — generalist experts — to embark

on data product development and reduce the need for specialization.
• Provide computational capabilities needed by the governance, such as auto‐

matically exercising policies at the right point of time — discovering data
products, accessing a data product, building or deploying a data product.

Federated Computational Governance

De#nition
A data governance operational model that is based on a federated decision
making and accountability structure, with a team made up of domains, data
platform, and subject matter experts — legal, compliance, security, etc. It cre‐
ates an incentive and accountability structure that balances the autonomy
and agility of domains, while respecting the global conformance, interopera‐
bility and security of the mesh. The governance model heavily relies on codi‐
fying and automated execution of policies at a fine-grained level, for each
and every data product.

Motivations
• Ability to get higher-order value from aggregation and correlation of inde‐

pendent data products when the mesh behaves as an ecosystem following
global interoperability standards.

• Counter the possible undesirable consequences of domain-oriented decen‐
tralizations: incompatibility and disconnection of domains.

• Make it feasible to achieve the governance requirements such as security, pri‐
vacy, legal compliance, etc. across a mesh of distributed data products.

• Reduce the organizational overhead of continuously synchronizing between
domains and the governance function, and to sustain agility in the face of
continuous change and growth.

I expect the practices, technologies and implementations of these principles vary and
mature over time, and for these principles remain unchanged.

I have intended for the four principles to be collectively necessary and su%cient; they
complement each other and each address new challenges that may arise from others.
Figure II-1 following diagram shows how these principles complement each other,
and their main dependencies. For example, a decentralized domain-oriented owner‐
ship of data can result in data siloing within domains, and this can be addressed by
the data as a product principle which demands domains to have an organizational
responsibility to share their data with product-like qualities outside of their domain.

Figure II-1. Four principles of Data Mesh and how one requires another

Operationally you can imagine the principles in action as demonstrated in Figure
II-2:

Figure II-2. Operational model of Data Mesh principles

The Origin
“To reject one paradigm without simultaneously substituting another is to reject science
itself.”

—Thomas S. Kuhn, The Structure of Scientific Revolutions

Thomas Kuhn, an American historian and philosopher of science, introduced the
concept of Paradigm Shi$ in his rather controversial book ‘The Structure of Scientific
Revolutions (1962)’. He observed how science progressed in two main modes: incre‐
mental and revolutionary; that science progressed through long stretches of legato
normal science where the existing theories form the foundation of all further research,
followed with the occasional disruption of staccato paradigm shi$s that challenged
and transcended the existing knowledge and norm. For example, the paradigm shift
of science from Newtonian mechanics to Quantum mechanics, when scientists attempt

3 https://martinfowler.com/articles/microservices.html
4 Skelton, M., & Pais, M. (2019). Team topologies: organizing business and technology teams for fast flow. IT

Revolution.
5 Rose, S. , Borchert, O. , Mitchell, S. and Connelly, S. (2020), Zero Trust Architecture, Special Publication

(NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/
10.6028/NIST.SP.800-207, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420 (Accessed July 25,
2021)

to explain the governing laws of physics at the quantum level. Kuhn recognized that a
prerequisite for a paradigm shi$ is identifying anomalies, observations that don’t fit
the existing norm, and entering the phase of ciris, questioning the validity of the
existing paradigm in solving the new problems and observations. He also observed
that people try, with increasing desperation, to introduce unsustainable complexities
into the existing solutions to account for anomalies.

This almost perfectly fits the origin of Data Mesh and its principles. It came from the
recognition of anomalies - failure modes and accidental complexities that I described
Part I - and moments of crisis where the characteristics of the existing data solutions
didn’t quite fit the realities of enterprises today. We are in a moment of Khunian cri‐
sis. But it’s only responsible to introduce a new set of principles for the new para‐
digm, the principles underpinning the premise of Data Mesh.

I wish I could claim that these principles were novel and new, and I cleverly came up
with them. On the contrary, the principles of Data Mesh are generalization and adap‐
tation of practices that have evolved over the last two decades and proved to address
our last scale challenge: scale of organization digitization. These principles are the
foundation of how digital organizations have solved organizational growth and com‐
plexity, while delivering unprecedented digital aspirations: moving all of their serv‐
ices to web, use mobile for every single touchpoint with their customers, and reduce
organizational synchronizations through automation of most activities, etc. These
principles are adaptation of what has enabled the Microservices3 and APIs revolution
and created platform-based team topologies4, with computational governance models
such as Zero Trust Architecture5 to assure digital services operate securely in a dis‐
tributed model across multiple clouds. In the last several years, I have been refining
these principles and adapting them to analytical data problems.

Let’s deep dive into each of them.

CHAPTER 4

Principle of Domain ownership

A note for Early Release readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 4th chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Data mesh, at its core, is founded in decentralization and distribution of responsibility
to people who are closest to the data in order to support continuous change and scal‐
ability. The question is, how do we decentralize and decompose the components of
the data ecosystem and their ownership. The components include the analytical data,
its associated information that makes the data usable and understandable (aka meta‐
data), the code that maintains the data and its integrity, and the computation and
infrastructure necessary to create and serve it.

Contrary to the existing data architectures, Data Mesh follows the seams of organiza‐
tional units as the axis of decomposing data. It does not follow the borders set by the
underlying technology solutions, such as lake or warehouse implementations, nor the
functional lines such as the centralized data or analytics team.

Our organizations today are decomposed based on their business domains. Such
decomposition localizes the impact of continuous change and evolution - for the
most part - to the domain. As you saw in <Chapter 3, Before the Inflection Point>,
traditional data architectures are partitioned around technology, e.g. data warehouse,

65

and give data ownership to teams performing activities related to the technology, e.g.
data warehouse team. The traditional architectures mirror an organizational struc‐
ture that centralizes the responsibility of sharing analytical data to a data team, which
has originally been setup to localize complexity of dealing with the new field of ana‐
lytical data management. Data Mesh partitions data around business domains, e.g.
podcasts, and gives data ownership to the domains, e.g. podcasts team. Data Mesh
gives the data sharing responsibility to those who are most intimately familiar with
the data, are first-class users of the data and are already in control of its point of ori‐
gin.

This rather intuitive division of responsibility solves one problem but introduces oth‐
ers: it leads to a distributed logical data architecture, creates challenges around data
interoperability and connectivity between domains. I will address these challenges
with the introduction of the other principles in the upcoming chapters.

In this section, I unpack how to apply Domain-Driven-Design (DDD) strategies to
decompose data and its ownership and introduce the transformational changes
organizations need to put in place.

Apply DDD’s Strategic Design to Data
Eric Evans’s book Domain-Driven Design (2003) has deeply influenced modern
architectural thinking and, consequently organizational modeling. It has influenced
the microservices architecture by decomposing the systems into distributed services
built around business domain capabilities. It has fundamentally changed how the
teams form, so that a team can independently and autonomously own a domain
capability.

Though we have adopted domain-oriented decomposition and ownership when
implementing operational systems, curiously, ideas of decomposition based on busi‐
ness domains have yet to penetrate the analytical data space. The closest application
of DDD in data platform architecture, I have seen, is for source operational systems
to emit their business domain events and for the monolithic data platform to ingest
them. However beyond the point of ingestion the domain teams’ responsibility ends,
and data responsibilities are transferred to the data team. The further transformations
are performed by the data team the more removed the data becomes from its original
form and intention. For example, in Daff Inc.’s podcasts’ domain emits logs of pod‐
casts being played on a short-retention log. Then downstream, a centralized data
team will pick these events up and attempt to transform, aggregate, and store them as
long-lived files or tables.

In his original book Eric Evans introduces a set of complementary strategies to scale
modeling at the enterprise level called DDD’s Strategic Design. These strategies are
designed for organizations with complex domains and many teams. DDD’s Strategic

66 | Chapter 4: Principle of Domain ownership

https://domainlanguage.com/ddd/
https://martinfowler.com/eaaDev/DomainEvent.html

Design techniques move away from the two widely used modes of modeling and
ownership: (1) organizational-level central modeling or (2) siloes of internal models
with limited integration, causing cumbersome inter-team communications. Eric Evan
observed that total unification of the domain models of the organization into one, is
neither feasible nor cost-effective. This is similar to data warehouse modeling.
Instead, DDD’s Strategic Design embraces modeling the organization based on multi‐
ple models each contextualized to a particular domain, called Bounded Context,
with clear boundaries and, most importantly, with the articulation of the relationship
between Bounded Contexts with Context Mapping.

Data Mesh, similarly to modern distributed operational systems and teams, adopts
the boundary of Bounded Contexts to distribute the modeling of analytical data, the
data itself and its ownership. For example, suppose an organization has already adop‐
ted a microservices or domain-oriented architecture and has organized its teams
around domains’ bounded contexts. In this case, Data Mesh simply extends this by
including the analytical data responsibilities in the existing domains. This is the foun‐
dation of scale in a complex system like enterprises today.

Consider Daff Inc. for example, there is a ‘media player’ team who is responsible for
the mobile and web digital media players. The ‘media player’ application emits ‘play
events’ that show how listeners interact with the player. The data can be used for
many downstream use cases, from improving the player applications performance to
reconstructing the ‘listener’s session’ and the longitudinal journey of discovering and
listening to music. In the absence of a Data Mesh implementation, the ‘media player’
team basically dumps the play events - with whatever quality and cadence - on some
sort of a short-retention streaming infrastructure or worse in its transactional data‐
base, which is then get picked up by the centralized data team to put into a lake or
warehouse or likely both. This changes with Data Mesh. Data Mesh extends the
responsibility of the ‘media player’ team to provide high-quality long-retention ana‐
lytical view of the ‘play events’ — real-time and aggregated. The ‘media player’ team
now has the end-to-end responsibility of sharing the ‘play event’ analytical data
directly to the data analysts, data scientists or other persons who are interested in the
data. The ‘play events’ analytical data is then transformed by the ‘listener session’
domain to get aggregated into a journey-based view of the listener interactions. The
‘recommendations’ domain uses the ‘listener sessions’ to create new datasets —graphs
to recommend music based on listeners’ social network’s play behavior.

Apply DDD’s Strategic Design to Data | 67

https://martinfowler.com/bliki/BoundedContext.html

Figure 4-1. Decomposing the ownership and architecture of analytical data, aligned with
the existing or new business domains.

Domain Data Archetypes
When we map the Data Mesh to an organization and its domains, we discover a few
different archetypes of domain-oriented analytical data. While Data Mesh principles
don’t differentiate between the archetypes of domains, at a practical level, recognizing
their characteristics help with optimizing the implementation and planning of the
execution.

There are three archetypes of domain-oriented data:

• Source-aligned domain data: analytical data reflecting the business facts generated
by the operational systems. This is also called native data product.

• Aggregate domain data: analytical data that is an aggregate of multiple upstream
domains.

• Consumer-aligned domain data: analytical data transformed to fit the needs of
one or multiple specific use cases and consuming applications. This is also called
#t-for-purpose domain data.

68 | Chapter 4: Principle of Domain ownership

Figure 4-2 expands on our previous example and demonstrates the archetypes of the
domain-oriented data. For example, the ‘media player’ domain serves source-aligned
analytical data directly correlated with the ‘media player’ application events. The ‘lis‐
tener sessions’ serve aggregate data products that transform and aggregate individual
listener player events into constructed sessions of interaction. And, ‘recommenda‐
tions’ domain data is a #t-for-purpose data that serves the specific needs of the recom‐
mender service.

Figure 4-2. Example of domain data archetypes

Source-aligned Domain Data
Some domains naturally align with the source, where the data originates. The source-
aligned domain datasets represent the facts and reality of the business. They capture
the data that is mapped very closely to what the operational systems of their origin,
systems of reality, generate. In our example, facts of the business such as ‘how the
users are interacting with the media players', or ‘the process of onboarding labels’ lead
to the creation of source-aligned domain data such as ‘user play events', ‘audio play
quality stream’ and ‘onboarded labels’. These facts are best known and generated by
their corresponding operational systems. For example the ‘media player’ system
knows best about the ‘user play events’.

Domain Data Archetypes | 69

1 Infinite time captures data from a particular epoch to an unbounded future. Epoch may vary from system to
system, depending on the retention policies of the domain. However it is expected to be long term.

In summary, Data Mesh assumes that organizational units are responsible for provid‐
ing business capabilities and responsible for providing the truths of their business
domain as source-aligned domain datasets.

The business facts are best presented as business Domain Events, and can be stored
and served as distributed logs of time-stamped events for any authorized consumer to
access. In addition to timed events, source-aligned domain data should also be pro‐
vided in easily consumable historical slices, aggregated over a time interval that
closely reflects the interval of change in the business domain. For example in an
‘onboarded labels’ source-aligned domain, the monthly aggregation is a reasonable
view to provide, ‘onboarded labels in month <m>’, processed and shared on a
monthly basis.

Note that, source-aligned business events are not modeled or structured like the
source application’s transactional database; an anti-pattern is often observed, particu‐
larly when events are sourced through Change Data Capture tooling or Data Virtuali‐
zation on top of the application’s database. The application database model serves a
very different purpose, and is often modeled for speed of performing transactions as
needed by the application. The analytical data is structured for ease of understanding
and access for reporting, machine learning training and other non-transactional use
cases.

The nature of the domain data—data on the outside—is very different from the inter‐
nal data that the operational systems use to do their job - data on the inside. Analyti‐
cal data often has much larger volume and represents immutable timestamped
information over an infinite1 time. Its modeling likely changes less frequently than
the source system, and its underlying storage and access technology should satisfy
data access and querying for reporting and machine learning training, efficiently over
a large body of data.

Source-aligned domain data is the most foundational. It is expected to be perma‐
nently captured and made available. As the organization evolves, its data-driven and
intelligence services can always go back to the business facts, and create new aggrega‐
tions or projections.

Note that source-aligned domain datasets closely represent the raw data at the point
of creation, and are not fitted or modeled for a particular consumer. The archetypes
introduced next cover the aggregations or the further transformations that might be
needed for specific consumptions.

70 | Chapter 4: Principle of Domain ownership

https://martinfowler.com/eaaDev/DomainEvent.html

Aggregate Domain Data
There is never a one to one mapping between a domain concept and a source system
at an enterprise scale. There are often many systems that can serve parts of the data
that belong to a shared concept—some legacy systems, some half modernized and
some fresh greenfield ones. Hence there might be many source-aligned data aka real‐
ity data that ultimately need to be aggregated into a more aggregate view of a concept.
For example, attributes that define ‘subscribers’, ‘songs’, or ‘artists’ can be mapped
from many different points of origin. For example, the ‘subscriber management’
domain can have profile-related information about the subscribers, while the ‘player’
domain knows about their music preferences. There are use cases, such as marketing
or sales, that demand a holistic view of the subscriber. This demands a new long-
standing aggregate domain to be created with the responsibility of consuming and
composing data from multiple source-aligned domains and sharing the aggregate
data.

I strongly caution you against creating ambitious aggregate domain
data; aggregate domain data that attempts to capture all facets of a
particular concept like ‘customer 360’. Such aggregate can become
too complex and unwieldy to manage and difficult to understand
and use for any particular use case. In the past, the discipline of
Master Data Management (MDM) has attempted to aggregate all
facets of shared data assets in one place and in one model. MDM
suffers from the complexity and out-of-date challenges of a single
unified cross-organizational canonical modeling.

Consumer-aligned Domain Data
Some domains align closely with the consuming use cases. The consumer-aligned
domain data, and the teams who own them, aim to satisfy a closely related group of
use cases. For example the ’social recommendation domain’ that focuses on providing
recommendations based on users’ social connections, creates domain data that fit this
specific need; perhaps through a ‘graph representation of the social network of users’.
While this graph data is useful for recommendation use cases, it might also be useful
for other use cases such as a ‘listeners notifications’ domain. The ‘listeners notifica‐
tion’ domain provides data regarding different information sent to the listener,
including what people in their social network are listening to.

Engineered features to train machine learning models often fall into this category. For
example, Daff Inc. introduces a machine learning model that analyses the sentiment
of a song, e.g. is positive or negative. Then uses this information for recommendation
and ranking of their music. However, to perform sentiment analysis on a piece of
music, data scientists need to extract a few features and additional information from
the song such as ‘liveliness’, ‘danceability’, ‘acousticness’, ‘valence’, etc. Once these

Domain Data Archetypes | 71

attributes (features) are extracted, they can be maintained and shared as a consumer-
aligned domain data to train the ‘sentiment analysis’ domain or other adjacent mod‐
els such as ‘playlist’ creation.

The consumer-aligned domain data have a different nature in comparison to source-
aligned domains data. They structurally go through more changes, and they trans‐
form the source domain events to structures and content that fit a particular use case.

I sometimes call these #t-for-purpose domain data.

Transition to Domain Ownership
Domain-oriented data ownership feels organic, and a natural progression of modern
organizations’ domain-driven digital journey. Despite that, it disputes some of the
archaic rules of analytical data management. Below is a list of a few and I’m sure you
can think of others.

Push Data Ownership Upstream
Data architecture nomenclature has flourished from the source of life itself: water.
Data lake, Lakeshore marts, Dataflow, Lakehouse, data pipelines, lake hydration, etc. I
do admit, it’s a reassuring symbol, it’s soothing and simply beautiful. However there is
a dangerous notion lurking underneath it. The notion that data must flow from
source to some other place - e.g. the centralized lake - to become useful, to become
meaningful, to have value and to be worthy of consumption. There is an assumption
that data upstream is less valuable or useful than data downstream.

Data Mesh challenges this assumption. Data can be consumable and useful right at
the source domain, I called this source-aligned domain data. It doesn’t need to flow
from source to consumer through purifying pipelines, before it can be used. Data
must be cleansed and made ready for consumption for analytical purposes upstream,
by the source domain. The accountability for sharing quality analytical data is pushed
upstream.

Of course at a later point downstream, source-aligned domain data can be aggregated
and transformed to create a new higher order insight. I called these, aggregate
domain data or fit-for-purpose domain data. This transformation happens within the
context of downstream domains, under the domain’s long-term ownership. There is
no intelligent transformation that happens in the no man’s land of in-between
domains, in what is called a data pipeline, today.

De"ne Multiple Connected Models
Data warehousing techniques and central data governance teams have been in the
search of the one canonical model holy grail. It’s a wonderful idea, one model that

72 | Chapter 4: Principle of Domain ownership

describes the data domains and can be used to provide meaning and data to all use
cases. But in reality systems are complex, continuously changing and no one model
can tame this messy life. Data Mesh in contrast follows DDD’s Bounded Context and
Context Mapping modeling of the data. Each domain can model their data according
to their context, share these models and the corresponding data thoughtfully with
others, and identify how one model can link and map to others.

This means there could be multiple models of the same concept in different domains
and that is OK. For example, the ‘artist’ representation in the ‘payment’ includes pay‐
ment attributes, which is very different from the ‘artist’ model in the ‘recommenda‐
tion’ domain, that includes artist profile and genre. But the mesh should allow to map
‘artist’ from one domain to another, and be able to link artist data from one domain
to the other. There are multiple ways to achieve this, including a unified identification
scheme, a single ID used by all domains that include an ‘artist’.

Polysemes, shared concepts across different domains, create linked data and models
across domains.

Embrace the Most Relevant Domain, and Don’t Expect the Single
Source of Truth
Another myth is that we shall have a single source of truth for each concept or entity.
For example, one source of truth to know everything about ‘subscribers’ or ‘playlists’,
etc. This is a wonderful idea, and is placed to prevent multiple copies of out-of-date
and untrustworthy data. But in reality it’s proved costly, an impediment to scale and
speed, or simply unachievable. Data Mesh does not enforce the idea of one source of
truth. However, it places multiple practices in place that reduces the likelihood of
multiple copies of out-of-date data.

The long-term domain-oriented ownership and accountability for providing discov‐
erable, easily usable and of high quality, suitable for a wide range of users — analysts
and scientists — reduces the need for copying.

Data Mesh endorses multiple models of the data, and hence data can be read from
one domain, transformed and stored by another domain. For example, ‘emerging
artists’ domain reads ‘play events’ domain data and transforms and then stores it as
‘emerging artists’. This mimics the real world, data moves around, gets copied and
gets reshaped. It’s very difficult to maintain the ideology of a single source of truth
under such a dynamic topology. Data Mesh embraces such dynamism for scale and
speed. However, it continuously observes the mesh and prevents errors that often
arise when data gets copied. Data Mesh prevents these errors through a set of comple‐
mentary non-negotiable capabilities of the mesh and data shared on the mesh:
immutability, time-variance, read-only access, discoverability and recognition of pol‐
ysemes’ unified identities cross-domain multiple domains. See <Chapter 9, Data
Product Logical Architecture> for more on these.

Transition to Domain Ownership | 73

https://en.wikipedia.org/wiki/Polysemy

Hide the Data Pipelines as Domains’ Internal Implementation
The need for cleansing, preparing, aggregating and sharing data remains, so does the
usage of data pipeline, regardless of using a centralized data architecture or Data
Mesh. The difference is that in traditional data architectures, data pipelines are first-
class architectural concerns that integrate to compose more complex data transfor‐
mation and movement. In Data Mesh, a data pipeline is simply an internal
implementation of the data domain and is handled internally within the domain. It’s
an implementation detail that must be abstracted from outside of the domain. As a
result, when transitioning to Data Mesh, you will be redistributing different pipelines
and their jobs to different domains.

For example the source-aligned domains need to include the cleansing, deduplicat‐
ing, enriching of their domain events so that they can be consumed by other
domains, without replication of cleansing downstream. Each domain data must
establish a Service Level Objective for the quality of the data it provides: timeliness,
accuracy, etc.

Consider Daff: our ‘media player’ domain providing audio ‘play events’ can include
cleansing and standardization data pipeline in their domain that provides a stream of
de-duped near-real-time ‘play events’ that conform to the organization’s standards of
encoding events.

Equally, we will see that aggregation stages of a centralized pipeline move into imple‐
mentation details of aggregate or fit-for-purpose domain data.

One might argue that this model leads to duplicated effort in each domain to create
their own data processing pipeline implementation, technology stack and tooling.
Data Mesh addresses this concern with the self-serve data platform, described in
<Chapter 6>. Having said that, domains are taking on additional responsibilities, the
responsibilities and efforts shift from a centralized data team to domains, to gain agil‐
ity and authenticity.

Recap
Arranging data and its ownership around technology has been an impediment to
scale, it simply has been orthogonal to how change happens and features develop.
Centrally-organized data teams have been the source of friction. There is an alterna‐
tive, the alternative is a tried and tested method to scale modelling at enterprise level:
Domain-oriented Bounded Context modeling. Data Mesh adapts this concept to the
world of analytical data. It demands domain teams who are closest to the data to own
the analytical data and serve the domain’s analytical data to the rest of the organiza‐
tion. Data Mesh supports creation of new domain’s data by composing, aggregating
and projecting existing domains.

74 | Chapter 4: Principle of Domain ownership

CHAPTER 5

Principle of Data as a Product

A note for Early Release readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 5th chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

One of the long standing challenges of existing analytical data architectures is the
high friction and cost of using data: discovering, understanding, trusting, exploring,
and ultimately consuming quality data. There have been numerous surveys surfacing
this friction. A recent report from Anaconda, a data science platform company, “The
State of Data Science 2020”, finds that nearly half of a data scientist’s time is spent on
data preparation - data loading and cleansing. If not addressed, this problem only
exacerbates with Data Mesh, as the number of places and teams who provide data -
i.e. domains - increases. Distribution of the organization’s data ownership into the
hands of the business domains raises important concerns around accessibility, usabil‐
ity and harmonization of distributed datasets. Further data siloing and regression of
data usability are potential undesirable consequences of Data Mesh’s first principle,
Domain-oriented ownership. The principle of data as a product addresses these con‐
cerns.

The second principle of Data Mesh, Data as a product, applies product thinking to
domain-oriented data, to not only remove such usability frictions but also truly

75

https://www.anaconda.com/state-of-data-science-2020
https://www.anaconda.com/state-of-data-science-2020

delight the experience of the data users - data scientists, data analysts, data explorers
and anyone in between. Data as a product expects that the analytical data provided by
the domains to be treated as a product, and the consumers of that data should be
treated as customers - happy and delighted ones. Furthermore, data as a product
underpins the case for Data Mesh, to unlock the value of an organisation’s data by
dramatically increasing the potential for serendipitous and intentional use.

Marty Cagan, a prominent thought leader in product development and management,
in his book INSPIRED, provides convincing evidence on how successful products
have three common characteristics: they are feasible, valuable and usable. Data as a
product defines a new concept, called data product that embodies standardized char‐
acteristics to make data valuable and usable. Figure 5-1 demonstrates this point visu‐
ally. This chapter introduces these characteristics. The next chapter, The Principle of
Self-Serve Data Platform, describes how to make building data products feasible.

Figure 5-1. Data products live at the intersection of Marty Cagan’s successful products’
characteristics - INSPIRED

I must acknowledge that treating data as a product doesn’t simply happen out of good
intentions. For that, this principle introduces new roles to the domains such as
domain data product owner and data product developer who have accountability and
responsibility for creating, serving and evangelizing data as a product - meeting spe‐

76 | Chapter 5: Principle of Data as a Product

https://svpg.com/inspired-how-to-create-products-customers-love/
https://svpg.com/inspired-how-to-create-products-customers-love/

cific objective measures of data accessibility, quality, usability and availability. In
chapter 12, The Organizational Design, I will cover further details about these new
roles.

Data as a product inverts the model of responsibility compared to the past paradigms.
In data lake or data warehousing architectures the accountability to create data with
expected quality and integrity resides downstream from the source; in the case of data
warehouse the accountability remains with the warehouse team, and in the case of the
lake it’s left with the consumers — recalling the 45% data scientist time spent on data
cleansing, on a good day. Data Mesh shifts this responsibility left as close to the
source of the data as possible. This transition is not unique to Data Mesh, in fact over
the last decade we have seen the trend of shi$ le$ with testing and operations, on the
basis that addressing problems is cheaper and more effective done close to the source.

I go as far as saying, data is not what gets shared on a mesh, it is only a data product
that can be worthy of sharing on the mesh.

The concept of data ownership in this book is limited and scoped
to the accountability of the organizations to maintain the quality,
longevity and lawful accessibility of the data they generate in trans‐
action with internal and external entities such as the users, custom‐
ers, and other organizations. The ultimate sovereignty of such data
remains with the users, customers, or other organizations whose
data is being captured and managed. The organizations act as data
product owners while the individuals remain the data owners.
The concept of self-sovereign data — individuals having the full
control and authority over their personal data — is close and dear
to my heart but outside of the scope of this work. I believe Data
Mesh can establish the foundation toward self-sovereign data, but
that would be the topic of a different book.

Of course to close the gap further between the desired state of having data as a prod‐
uct and a technical implementation, I need to introduce the architectural parallel of a
data product. This architectural component is called a data quantum and I will intro‐
duce that in chapter 8, The Logical Architecture.

For now, let’s unpack how we can apply product thinking to data.

Apply Product Thinking to Data
Over the last decade, high-performing organizations have embraced the idea of treat‐
ing their internal operational technology like a product, similarly to their external
technology; treating their internal developers as customers and their satisfaction a
sign of success. At ThoughtWorks, we have noticed this trend particularly in two

Apply Product Thinking to Data | 77

areas: applying product management techniques to internal platforms which acceler‐
ates the internal developers to build and host solutions more easily on top of internal
platforms, as well as treating APIs as a product to build APIs that are discoverable,
understandable, easily testable to assure an optimal developer experience.

Applying the magic ingredient of product thinking to internal technology begins with
establishing empathy with internal consumers i.e. fellow developers, and collaborat‐
ing with them on designing the experience, gathering usage metrics, and continu‐
ously improving the internal technical solutions over time to maintain ease of use;
building internal tools that are valuable to the developers and ultimately business.

Curiously, the magical ingredient of empathy, treating data as a product and its users
as customers, has been missing in big data solutions. Operational teams still perceive
their data as a byproduct of running the business, leaving it to someone else, e.g. the
data analytics team, to pick it up and recycle it into products. In contrast, Data Mesh
domain teams apply product thinking with similar rigor to the datasets that they pro‐
vide, striving for the best data user experience.

Consider Daff Inc.’s example. One of its critical domains is the ‘media player’. The
‘Media player’ domain provides essential data such as what songs have been played by
whom, when, and where. There are a few different key data consumers for this infor‐
mation. For example, the ‘media player support’ team is interested in near-real-time
events to catch errors causing a degrading customer experience quickly and recover
the service, or respond to incoming customer support calls informedly. On the other
hand, the ‘media player design’ team is interested in aggregated play events that tell a
data story about the listener’s journey over a longer period of time, to improve the
media player features toward a more engaging listener experience.

In this case, the ‘media player’ domain provides two different datasets as its products
to the rest of the organization; ‘near-real-time play events’ exposed as infinite event
logs, and aggregated play events exposed as serialized files on an object store. The
‘media player’ domain needs to know their data customers and how they wish to
access the data to continuously strive to improve their experience.

While you can adopt the majority of the product ownership techniques, there is
something unique about data. The difference between data product ownership and
other types of products lies in the unbounded nature of data use cases, the ways in
which a particular data can be combined with other data and ultimately turned into
insights and actions. At any point in time, data product owners are aware or can plan
for what is known today as viable use cases for their data. While there remains a large
portion of unknown future use cases for their data produced today, perhaps beyond
the imagination of the data product owners. This is more true for source-aligned
domains and less for consumer-aligned ones. To design data as a product that balan‐
ces the immediate known use cases and the unknown ones, the source-aligned data
product owners must strive to model the reality of the business, as closely as possible,

78 | Chapter 5: Principle of Data as a Product

https://www.thoughtworks.com/radar/techniques/applying-product-management-to-internal-platforms
https://www.thoughtworks.com/radar/techniques/apis-as-a-product

in their data. For example, capturing all the ‘player events’ as an infinite high resolu‐
tion log, so that we can build other transformations and infer future insights from the
data that is captured today.

Baseline usability characteristics of a data product
Individual domains must offer a set of domain-specific measurable characteristics
that demonstrate the value and impact of their specific datasets as products. For
example, the decision on resolution of ‘player events’ or how long the domain is
going to retain those events, affect the usability of this specific domain.

In addition to that, there are a set of baseline characteristics that all data products
regardless of their domain must exhibit. I call these baseline data usability characteris‐
tics. Every data product must exhibit these characteristics to be part of the mesh.
Figure 5-2 lists the baseline data usability characteristics that all data products share,
data products of all domains and all types of data.

Figure 5-2. Baseline usability characteristics that all domain-oriented data products
share

Note that these are usability characteristics and are oriented around the experience of
the consumers. These are not intended to express the technical characteristics relevant

Apply Product Thinking to Data | 79

1 Norman, D. A. (2002). "e design of everyday things. Basic Books.

to the perspective of the data product developers. Chapter 9, Data Quantum Design,
covers the underlying technical characteristics.

The baseline characteristics listed in this section are an addition to what we have
known as FAIR data in the past — data that meet principles of #ndability, accessibility,
interoperability, and reusability. FAIR principles were published in 2016 in Scienti#c
Data, a peer-reviewed scientific journal. In addition to these principles I have intro‐
duced characteristics that are necessary to make distributed data ownership and
architecture work.

Let’s put ourselves in the shoes of data consumers and walk through the baseline data
usability characteristics.

Discoverable
“Two of the most important characteristics of good design are discoverability and
understanding. Discoverability: figure out what actions are possible and where and
how to perform them? Understanding: What does it all mean? How is it supposed to
be used? What do all the different controls and settings mean?1

—Don Norman (Cognitive Science and design researcher, professor, and author

The very first step that data users take in their journey, is to discover the world of data
available to them, explore and search to find “the one”. Hence one of the first usability
attributes of data is to be easily discoverable. Data consumers — or data users, both of
which I use interchangeably — need to be able to explore the available data products,
search and find the desirable sets, explore them and gain confidence in using them. A
traditional implementation of discoverability is often approached as some centralized
registry or catalogue listing available datasets with some additional information about
each dataset, the owners, the location, sample data, etc. Often this information is
curated, after the fact that data is generated, and by the centralized data team or the
members of the governance team.

Data product discoverability on Data Mesh embraces a source-oriented solution,
where discoverability information is intentionally provided by the data product itself.
Data Mesh embraces the dynamic topology of the mesh, continuously evolving data
products, and the sheer scale of available data products. Hence it relies on individual
data products to provide their discoverability information at different points of their
lifecycle — build, deploy and run — in a standard way. Each data product continu‐
ously shares its source of origin, owners, run-time information such as timeliness,
quality metrics, sample datasets, and most importantly information contributed by
their consumers such as the top use cases and applications enabled by their data.

80 | Chapter 5: Principle of Data as a Product

https://www.go-fair.org/fair-principles/

2 https://medium.com/@rachelbotsman/trust-thinkers-72ec78ec3b59

Chapter 9, Data Quantum Design, will discuss the technical design of a data product
discoverability.

Understandable
The next step in a data user’s journey, once they’ve discovered a data product, is to
understand it. Get to know the semantic of its underlying data, as well as various syn‐
tax in which the datasets are presented to the data user.

Each data product provides a semantically coherent dataset; a dataset with a specific
meaning. A data user needs to understand this meaning, what kind of entities the data
product encapsulates, what are the relationships among the entities and their adjacent
data products. Back to our ‘media player event’ example, a data user should easily
understand what constitutes a player event: the ‘user’, the ‘play actions’ they have
taken and the ‘time’ and ‘location’ of their action and the ‘feedback’ the ‘action’ has
resulted in. The data user should easily understand the kinds of ‘actions’ available and
that there is a relationship between ‘player event’s listener’ and that of a ‘subscriber’
from the adjacent ‘users’ domain. Data products must provide a formal representa‐
tion of such semantics.
In addition to an understanding of the semantic, data users need to understand how
exactly the data is presented to them. How it is serialized and how they can access and
query the data syntactically; what kind of SQL queries can they execute or how they
can read the data objects - understand the schema of the underlying representation of
the data. This is ideally accompanied by sample datasets and example consumer
codes.

Data schemas are just a starting point to support the understanding of the data prod‐
uct in a self-serve manner. Additionally, dynamic and computational documents like
computational notebooks are great companions to tell the story of a data product.
Computational notebooks include documentation of the data, as well as code to use
it, with an immediate feedback of visually demonstrating the code in action.

Lastly, understanding is a social process. We learn from each other. Data products
must facilitate communication across their consumers to share their experience and
how they take advantage of the data product.

Understanding a data product requires no user hand holding. A self-serve method of
understanding is a baseline usability characteristic.

Trustworthy and Truthful
“Trust: a confident relationship with the unknown”. 2

Apply Product Thinking to Data | 81

https://en.wikipedia.org/wiki/Notebook_interface

—Rachel Botsman (Trust Fellow at Oxford University)

No one will use a product that they can’t trust. So what does it really mean to trust a
data product, and more importantly what does it take to trust? To unpack this, I like
to use the definition of trust offered by Rachel Botsman: the bridge between the known
and the unknown. A data product needs to close the gap between what data users
know confidently about the data, and what they don’t know but need to know to trust
it. While the prior characteristics like understandability and discoverability close this
gap to a degree, it takes a lot more to trust the data for use.

The data users need to confidently know that the data product is truthful - represents
the fact of the business. They need to confidently know how closely data reflects the
reality of the events that have occurred, the probability of truthfulness of the aggrega‐
tions and projections that have been created from business facts.

Each data product needs to communicate and guarantee its service level objectives
(SLOs)- objective measures that remove uncertainty surrounding the data. This
includes measuring conformance to them, monitoring them and triggering support
processes if SLOs are broken. The data product SLOs include, among others:

Interval of change
How often changes in the data are reflected.

Timeliness
The skew between the time that a business fact occurs and is served to the data
users.

Completeness
Degree of availability of all the necessary information,

Statistical shape of data
Its distribution, range, volume, etc.

Lineage
The data journey from source to now.

Precision and accuracy over time
Degree of business truthfulness as time passes.

Operational qualities
Freshness, general availability, performance, etc.

In the traditional data platforms it’s common to extract and onboard data that has
errors, or does not reflect the truth of the business and simply can’t be trusted. This is
where the majority of the efforts of centralized data pipelines are concentrated,
cleansing data after ingestion.

82 | Chapter 5: Principle of Data as a Product

https://en.wikipedia.org/wiki/Service-level_objective

In contrast, Data Mesh introduces a fundamental shift that the owners of the data
products must communicate and guarantee an acceptable level of quality and trust‐
worthiness - unique to their domain - as a component of their data product. This
requires applying data cleansing and automated data integrity testing at the point of
creation of the data product.

Providing data provenance and data lineage — the data journey, where it has come
from and how it got here — as the metadata associated with each data product helps
consumers gain further confidence in the data product and its suitability for their
particular needs. I’m of the opinion that once the discipline of building trustworthi‐
ness in each data product is established, there is less need for establishing trust
through investigative processes and applying detective techniques navigating the line‐
age tree. Having said that, data lineage will remain an important element in a few sce‐
narios, such as postmortem root cause analysis, debugging, and evaluation of data’s
fitness for ML training.

Addressable
A data product must offer a permanent and unique address to the data user to pro‐
grammatically or manually access it. A unique addressing system must embrace the
dynamic nature of the data and the mesh topology. It must embrace the aspects of
data products that can continuously change while supporting continuity of usage. The
addressing system must accommodate the following continuously changing aspects
of a product, among others:

• Continuous change in the data product’s semantic and syntax: schema evolution,
• Continuous release of new data time slices: partitioning strategy and grouping of

data tuples associated with a particular time (duration),
• Newly supported syntaxes of the underlying data: new ways of serializing, pre‐

senting and querying the data,
• Continuously changing run-time behavioral information: e.g. SLOs.

The unique address must follow a global convention that helps the users to program‐
matically and consistently access all data products. The data product must have an
addressable aggregate root that serves as an entry to all information about a data
product, including its documentation, SLOs, the datasets it serves, etc. The data prod‐
uct address can be discovered through the Discoverability solution.

Interoperable and Composable
One of the main concerns in a distributed data architecture is the ability to correlate
data across domains and stitch them together in wonderful and insightful ways: join,
filter, aggregate. The key for an effective composability of data across domains is fol‐

Apply Product Thinking to Data | 83

https://martinfowler.com/bliki/DDD_Aggregate.html

lowing standards and harmonization rules, that allow linking data across domains
easily.

Here are a few things data products need to standardize to facilitate interoperability
and composability:

Field type
A common explicitly defined type system.

Polysemes Identi#ers
Universally identifying entities that cross boundaries of data products.

Data products global addresses
A global unique address allocated to each data product, ideally with a uniform
scheme for ease of establishing connections to different data products.

Common metadata #elds
Such as representation of time when data occurs and when data is recorded.

Schema linking
Ability to reuse and link to schemas — types — defined by other data products.

Data linking
Ability to link to data in other data products.

Schema stability
Approach to evolving schemas that respects backward compatibility.

For example, let’s look at managing polysemes identifiers. At Daff Inc. business,
‘artist’ is a core business concept that appears in different domains. An ‘artist’, while
remaining to be the same global entity, has different attributes and likely different
identifiers in each domain. The ‘play event’ data product may recognize the artist dif‐
ferently to the ‘payment’ domain that takes care of invoices and payments for artists
royalties. In order to correlate data about an ‘artist’ across different domain data
products we need to agree on how we identify an ‘artist’, globally, as a polyseme — an
entity that crosses multiple domain boundaries.

Chapter 7, The Principle of Computational and Federated Governance covers the
topic of global standards and protocols applied to each data product to create a happy
ecosystem of interoperable data products. Interoperability is the foundation of any
distributed system design and Data Mesh is no exception.

Secure
Data users must access the data product securely and in a confidentiality-respecting
manner. This is a must, whether the architecture is centralized or distributed. How‐
ever in the world of decentralized architecture like Data Mesh, the access control is
validated by the data product, right in the flow of data, access, read or write. The

84 | Chapter 5: Principle of Data as a Product

https://en.wikipedia.org/wiki/Polysemy

access control policies can change dynamically and continuously get evaluated at each
point of access to the data product’s data. Additionally, access to a data product is not
quite binary — whether the user can see or can’t see the data. In many cases while the
user may not be able to actually see the record, it might have sufficient permissions to
see the shape of the data and evaluate using the data given its statistical characteris‐
tics. Similarly to operational domains the access control policies can be defined cen‐
trally but enforced at run time by each individual data product. Data products must
follow the practice of security policy as code. This is to write security policies in a way
that can be versioned, computationally tested and enforced, can be deployed and
observed.

A policy described, tested and maintained as code, can articulate various security
related concerns such as the ones below, among others:

Access control
Who, what and how systems can access the data product

Encryption
What kinds of encryption - on disk, in memory, or in transit - using which
encryption algorithm, how to manage keys and minimize the radius of impact in
case of breaches

Con#dentiality levels
What kinds of confidential information e.g. personally identifiable information,
personal health information - the data product carries

Data retention
How long the information must be kept

Regulations and agreements
GDPR, CCPA, domain-specific regulations, contractual agreements

Natively Accessible
Depending on the data-maturity of the organization there is a wide spectrum of data
user personas in need of access to data products. The spectrum spans from data ana‐
lysts that are comfortable with exploring data in sheets to the ones that create statisti‐
cal models — visualizations or reports — of the data, to data scientists that curate and
structure the data to train their models, or analytical application developers that
expect a real-time stream of events. This is a fairly wide spectrum of users with
equally diverse expectations of how to fetch and use data.

There is a direct link between the usability of a data product, and how easily a partic‐
ular data user can access it with their native tools. For example, the ‘play events’ data
product needs to natively support fetching data through a SQL query to satisfy the

Apply Product Thinking to Data | 85

https://www.thoughtworks.com/radar/techniques/security-policy-as-code

native mode of access by a data analyst, as well as reading a stream of events, for a
data scientist.

Valuable on Its Own
I think it’s fairly obvious that a data product must be valuable — it should have some
inherent value for the data users in service of the business and customers. After all if
the data product owner can’t envisage any value out of the data product, perhaps best
not create one. Having said that, it’s worth calling out that a data product should
carry a dataset that is valuable and meaningful on its own — without being joined and
correlated with other data products.

Of course, there is always higher order meaning, insight and value that can be derived
from the correlation of multiple data products, but if a data product on its own serves
no value it should not exist.

There is an important differentiation between units that constitute Data Mesh, i.e.
data products, and units that constitute a data warehouse, tables. In the data ware‐
house modeling, there are often glue tables that optimize correlation between entities,
i.e. identity tables that map identifiers of one kind of entity to another. Such identity
tables are not meaningful or valuable on their own — without being joined to other
tables — they are mechanical implementations to facilitate correlations. This is not
true about data products. Data Mesh does not demand mechanical data products that
simply facilitate joining other data products.

Summary
For data to be a product it must adhere to a set of rules and exhibit a set of traits that
make it fit right in the intersection of Cargan’s usability, feasibility, and valuable Venn
diagram. For data to be a product, it must be valuable on its own, and in cooperation
with other data products. It must demonstrate empathy for its users, be accountable
for its usability and integrity.

Transition to Data as a Product
In working with my clients, I have found that they are overwhelmingly receptive to
Data Mesh principles, often questioning “why I didn’t think of it myself ” or occasion‐
ally saying “we have been doing something similar but not quite the same”. The prin‐
ciples appear to be intuitive and rather natural next steps in their organizations’ tech
modernization journey; an extension to modernization of the operational aspect of
organizations - e.g. moving toward domain-oriented ownership of capabilities with
microservices and internal product thinking treating operational APIs as products.

However, their sense of discomfort arises when we go deeper into what it actually
takes to implement the transformation toward Data Mesh, going beyond words and

86 | Chapter 5: Principle of Data as a Product

clearly contrasting the system of the world of Data Mesh against the past. What I
found in my conversations with Data Mesh early implementers is that while they ver‐
balize the principles and their intention to implement them, the implementations
remain heavily influenced by the familiar techniques of the past.

For this reason, I have decided to include a number of thought-provoking transition
statements as well as a few pragmatic steps to crystalize the differences between the
existing paradigm and truly serving and owning data as a product.
I invite you to think of new transition statements that I likely have missed here.

Include Data Product Ownership in Domains
Movements such as DevOps — closing the gap between building and operating busi‐
ness services — as well as collaborative product-oriented teams have been moving the
companies from functional teams — separate teams for each function of design, dev,
ops — to cross-functional teams - integrated teams of design, dev, ops.
Introduction of analytical data as a product adds to the list of existing responsibilities
of cross-functional domain teams, and expands their roles:

• Data product developer: the role responsible for developing, serving and main‐
taining the domain’s data products as long as the data products remain to exist
and serve its consumers.

• Data product owner: the role accountable for the success of domain’s data prod‐
ucts in delivering value, satisfying and growing the data consumers, and defining
the lifecycle of the data products.

Figure 5-3 shows the sample of products that a domain creates and maintains —
operational applications and data products. The domain team’s cross-functional team
includes new roles to maintain its data products.

Transition to Data as a Product | 87

Figure 5-3. Cross-functional domain data teams with explicit roles to support data prod‐
uct ownership and development

Introduce the Domain Data Product Owner Role. Data product owners make decisions
around the vision and the roadmap for the data products, concern themselves with
the satisfaction of their data consumers, and continuously measure and improve the
quality and richness of the data their domain owns and produces. They are responsi‐
ble for the lifecycle of the domain datasets, when to change, revise and retire data and
schemas. They strike a balance between the competing needs of the domain data con‐
sumers.

Data product owners must define success criteria and business-aligned Key Perfor‐
mance Indicators (KPIs) for their data products — a set of objective metrics that
measures the performance and success of their data products. Like any product the
success criteria must be aligned with the satisfaction of the data consumers. For
example, data consumer satisfaction can be measured through net promoter score —
the rate of consumers that recommend the data products to others, the decreased lead
time for data product consumers to discover and use the data product successfully,
and the growth of users.

88 | Chapter 5: Principle of Data as a Product

Introduce the Domain Data Product Developer Role. In order to build and operate the
domains’ data products, the development team’s roles need to be extended to include
data product developers. Data product developers work closely with their collaborat‐
ing application developers in defining the domain data semantic, mapping data from
application context, data on the inside, to the data product context, data on the out‐
side. They build and maintain the transformation logic that generates the desired
data. They build and maintain the usability traits and guarantees of their data prod‐
ucts.

A wonderful side effect of such a cross-functional team is cross pollination of differ‐
ent skill sets and ability to cross skill the existing developers to become data product
developers.

Reframe the Nomenclature to Create Change
One of the commonly used phrases in data analytics is ingestion, receiving data from
some upstream source — often an untrustworthy source that has egested data as a
byproduct of its operation. It’s now the job of the downstream pipeline is to ingest,
cleans, process the data before it can be consumed to generate value.

Data Mesh suggests reframe receiving upstream data from ingestion to consumption.
The subtle difference is that the upstream data is already cleansed, processed and
served ready for consumption. The change of language creates new cognitive framing
that is more aligned with the principle of serving data as a product.

Relatedly, the word extraction used in ETL (extract, transform, load) and its other
variations, need to be critically evaluated. Extraction evokes a passive role for the pro‐
vider, and an intrusive role for the consumer. As we know, extracting data from
operational databases that are not optimized for use other than their application’s cre‐
ate all kinds of pathological coupling and a fragile design. Instead, we can shift the
language to publish or serve, and of course consume by the user. This implies shifting
the implementation of data sharing from accessing raw databases, to intentionally
sharing domain events or other interfaces.

By now you probably have picked up on my emphasis on language and metaphors we
use. George Lakoff - professor of Cognitive Science and Linguistics at UC Berkeley -
in his book, Metaphors we live by, elegantly demonstrates the consequence of shifting
our language around the concept argument, from war to dance. Imagine the world we
would live in and the relationships we would build, if instead of winning an argu‐
ment, losing and gaining argument ground, and attacking the weak points of an argu‐
ment we would, as dancers, perform a balanced and aesthetically pleasing argument,
express our ideas and emotions through a beautiful and collaborative ritual of danc‐
ing.

Transition to Data as a Product | 89

https://georgelakoff.com
https://www.amazon.com/Metaphors-We-Live-By-ebook/dp/B009KA3Y6I

Think of Data as a Product, Not a Mere Asset
“Data is an asset”, “Data must be managed like an asset”. These are the phrases that
have dominated our vernacular in big data management.

The metaphor of asset used for data is nothing new. After all, for decades, TOGAF, a
standard of The Open Group for Enterprise Architecture methodologies and frame‐
works explicitly has penciled in “Data is an Asset” as the first principle of its data
principles. While on the surface this is a rather harmless metaphor, it has shaped our
perceptions and actions toward negative consequences. For example, our actions
toward how we measure success. Based on my observations Data as an asset has led
to measuring success by vanity metrics — metrics that make us look or feel good but
don’t impact performance — such as the number of datasets and tables captured in the
lake or warehouse, or the volume of data. These are the metrics I repeatedly come
across in organizations. Data as an asset promotes keeping and storing data rather
than sharing it. Though TOGAF’s “Data is an asset” principle is immediately followed
by “Data is shared”.

I suggest the change of metaphor to data as a product, and a change of perspective
that comes with that. For example, measuring success through adoption of data, its
number of users, and their satisfaction using the data; underscoring sharing the data
vs. keeping and locking it up and putting emphasis on the continuous care that a
quality product deserves.

I invite you to spot other metaphors and vocabulary that we need to reshape to con‐
struct a new system of concepts for Data Mesh.

Establish a Trust-but-verify Data Culture
Data as a product principle implements a number of practices that lead to a culture
where data consumers, by default, can trust the validity of the data, while verifying its
fitness for their use cases.

These practical changes include: introducing the role for long-term ownership of a
data product, accountable for the integrity, quality, availability and other usability
characteristics of the data product; introducing the concept of a data product that not
only shares data but also explicitly shares a set of objective measures such as timeli‐
ness, retention, and accuracy; creating a data product development process that auto‐
mats testing of the data product transformation code as well as the integrity of the
data it produces.

Today, in the absence of these data-as-a-product practices, data lineage remains a vital
ingredient for establishing trust. The large gap between data providers and data con‐
sumers, data providers lack of visibility to the consumers and their needs, lack of
long-term accountability of the actual data providers, and the absence of computa‐

90 | Chapter 5: Principle of Data as a Product

https://www.opengroup.org/togaf
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap20.html#:~:text=Data%20is%20an%20asset%20that,is%20to%20aid%20decision%2Dmaking.

tional guarantees, have left consumers with no choice but to assume data is untrust‐
worthy and requires a detective investigation through lineage before it can be trusted.

Data-as-a-product practices aim to build a new culture, from presumption of guilt, to
the Russian proverb of trust by verify.

Join Data and Compute as One Logical Unit
Let’s do a test. When you hear the word data product what comes to your mind?
What shape? What does it contain? How does it feel? I can guarantee that a large por‐
tion of readers imagine static files or tables - columns and rows, some form of storage
medium. It feels static, and perhaps of trustworthy quality. It’s accumulated. It’s con‐
tent is made of bits and bytes that are representative of the facts, beautifully modeled.
That is intuitive, after all by definition datum - singular form - is a “piece of informa‐
tion”.

The result of this perspective is the separation of code (compute) from data; in this
case, separation of the code that maintains the data, creates it and serves it. This sepa‐
ration creates orphaned datasets that overtime decay. At scale, we experience this sep‐
aration as data swamps — a deteriorated data lake.

Data Mesh shifts from this dual mode of data vs. code to data and code as one archi‐
tectural unit. A single deployable unit that is structurally complete to do its job, pro‐
viding high-quality data of a particular domain. None exists without the other.

The data and code co-existence as one unit is not a new concept for people who have
managed Microservices architecture. The evolution of operational systems has
moved to a model that each service manages its code and data, its schema definition
and upgrades. The difference between an operational system is the relationship
between the code and its data. In the case of Microservices architecture, data serves
the code; it maintains state so that code can complete its job, serving business capabil‐
ities. In the case of a data product and Data Mesh this relationship is inverse, code
serves data; the transformation logic is there to create the data and ultimately serve it.

Note that the underlying physical infrastructures that host code and data can remain
independent.

Interestingly, the original definition of datum, from 18th century
Latin, is “something given”. This original definition is much closer
to the data product’s spirit.

Transition to Data as a Product | 91

https://en.wikipedia.org/wiki/Data_lake
https://martinfowler.com/articles/microservices.html

Recap
The mindshift, the principle, and the design of Data as a product is not only a
response to the data siloing challenge that may arise from distribution of data owner‐
ship to domains, but also is a shift in the data culture toward data accountability and
data trust at the point of origin. The ultimate goal is to make data simply usable.

We looked at eight non-negotiable baseline usability characteristics including discov‐
erability, understandability, trustworthiness, addressability, security, interoperability,
native accessibility, and independently valuable. We introduced the role of data product
owner - someone with an intimate understanding of the domain’s data and its con‐
sumers - to assure continuity of ownership of data and accountability of success met‐
rics such as data quality, decreased lead time of data consumption, and in general data
user satisfaction through net promoter score.

Each domain will include data product developer roles, responsible for building, main‐
taining and serving the domain’s data products. Data product developers will be
working alongside their fellow application developers in the domain. Each domain
team may serve one or multiple data products. It’s also possible to form new teams to
serve data products that don’t naturally fit into an existing operational domain.

Data as a product creates a new system of the world, where data is and can be trusted,
built and served with deep empathy for its users and their needs, and its success is
measured through the value delivered to the users and not its size.

This ambitious shift must be treated as an organizational transformation. I will cover
the organizational transformation Part IV of this book. It also requires an underlying
supporting platform. The next chapter looks into the platform shift to support Data
Mesh.

92 | Chapter 5: Principle of Data as a Product

https://en.wikipedia.org/wiki/Net_Promoter

Prospective Table of Contents
(Subject to Change)

Part I : Why Data Mesh?
Chapter 1: The In!ection Point

• Great Expectations of Data
• The Great Divide of Data
• Scale, Encounter of a New Kind
• Beyond Order
• Approaching the Plateau of Return

Chapter 2: After the In!ection Point
• Embrace Change in a Complex, Volatile, and Uncertain Business Environment
• Sustain Agility In the Face of Growth
• Increase the Ratio of Value From Data to Investment

Chapter 3: Before The In!ection Point
• Evolution of Analytical Data Architectures
• Characteristics of Analytical Data Architecture

Part II: What Is Data Mesh?
"e Principles
"e Origin

93

Chapter 4: Principle of Domain Ownership
• Apply DDD’s Strategic Design to Data
• Domain Data Archetypes
• Transition to Domain Ownership

Chapter 5: Principle of Data as a Product
• Apply Product Thinking to Data
• Transition to Data Products

Chapter 6: Principle of Self-Serve Data Platform
• Apply Platform Thinking to Data Infrastructure
• Transition to Self-Serve Data Platform

Chapter 7: Principle of Federated Computational Governance
• Apply Systems Thinking to Data Mesh Governance
• Apply Federation to the Governance Model
• Apply Computation to the Governance Model
• Transition to Federated Computational Governance

Part III: How to Design Data Mesh Architecture?
"e Scope
"e Approach

Chapter 8: The Logical Architecture
• Domain-Oriented Analytical Data Sharing Interfaces
• Data Product Quantum
• The Multi-plane Data Platform
• Embedded Computational Policies

Chapter 9: Data Product Quantum Blueprint
• A Refresher On Data Product
• Data Product Affordance

94 | Prospective Table of Contents (Subject to Change)

• Data Product Conceptual Blueprint

Chapter 10: The Multi-Plane Data Platform
• To Come

Part IV: How to Get Started With Data Mesh
Chapter 11: Execution Model

• Data Mesh as an Org Level Strategy
• Cycle of Intelligence as a Vehicle to Execute
• Data Product Conceptual Blueprint
• Execution Model
• Maturity Model
• Milestones
• Migration From Legacy

Chapter 12: Organization Design
• Data Mesh Team Topologies
• Data Product Ownership
• Discovering Data Product Boundaries And Teams
• Population Profile

Chapter 13: What Comes Next
• The Gentle Move from Centralization to Decentralization
• What Is Next: Inter-org Data Mesh
• What Is After: Data Web
• Setting the Foundation For Sovereignty

Prospective Table of Contents (Subject to Change) | 95

	Cover
	Starburst Data
	Copyright
	Table of Contents
	Part I. Why Data Mesh?
	Chapter 1. The Inflection Point
	Great Expectations of Data
	The Great Divide of Data
	Operational Data
	Analytical Data
	Analytical and Operational Data Misintegration

	Scale, Encounter of a New Kind
	Beyond Order
	Approaching the Plateau of Return
	Recap

	Chapter 2. After The Inflection Point
	Embrace Change in a Complex, Volatile and Uncertain Business Environment
	Align Business, Tech and Now Analytical Data
	Close The Gap Between Analytical and Operational Data
	Localize Data Change to Business Domains
	Reduce Accidental Complexity of Pipelines and Copying Data

	Sustain Agility in the Face of Growth
	Remove Centralized and Monolithic Bottlenecks of the Lake or the Warehouse
	Reduce Coordination of Data Pipelines
	Reduce Coordination of Data Governance
	Enable Autonomy

	Increase the Ratio of Value from Data to Investment
	Abstract Technical Complexity with a Data Platform
	Embed Product Thinking Everywhere
	Go Beyond The Boundaries

	Recap

	Chapter 3. Before The Inflection Point
	Evolution of Analytical Data Architectures
	First Generation: Data Warehouse Architecture
	Second Generation: Data Lake Architecture
	Third Generation: Multimodal Cloud Architecture

	Characteristics of Analytical Data Architecture
	Monolithic
	Monolithic Architecture
	Monolithic Technology
	Monolithic Organization
	The complicated monolith
	Technically-Partitioned Architecture
	Activity-oriented Team Decomposition

	Recap

	Part II. What is Data Mesh
	Chapter 4. Principle of Domain ownership
	Apply DDD’s Strategic Design to Data
	Domain Data Archetypes
	Source-aligned Domain Data
	Aggregate Domain Data
	Consumer-aligned Domain Data

	Transition to Domain Ownership
	Push Data Ownership Upstream
	Define Multiple Connected Models
	Embrace the Most Relevant Domain, and Don’t Expect the Single Source of Truth
	Hide the Data Pipelines as Domains’ Internal Implementation

	Recap

	Chapter 5. Principle of Data as a Product
	Apply Product Thinking to Data
	Baseline usability characteristics of a data product

	Transition to Data as a Product
	Include Data Product Ownership in Domains

	Recap

	Prospective Table of Contents (Subject to Change)
	Part I : Why Data Mesh?
	Chapter 1: The Inflection Point
	Chapter 2: After the Inflection Point
	Chapter 3: Before The Inflection Point

	Part II: What Is Data Mesh?
	Chapter 4: Principle of Domain Ownership
	Chapter 5: Principle of Data as a Product
	Chapter 6: Principle of Self-Serve Data Platform
	Chapter 7: Principle of Federated Computational Governance

	Part III: How to Design Data Mesh Architecture?
	Chapter 8: The Logical Architecture
	Chapter 9: Data Product Quantum Blueprint
	Chapter 10: The Multi-Plane Data Platform

	Part IV: How to Get Started With Data Mesh
	Chapter 11: Execution Model
	Chapter 12: Organization Design
	Chapter 13: What Comes Next

